精英家教网 > 初中数学 > 题目详情
体育课上,老师训练学生的项目是投篮,假设一名同学投篮后,篮球运行的轨迹是一段抛物线,将所得轨迹形成的抛物线放在如图所示的坐标系中,得到解析式为y=-
1
5
x2+
2
5
x+3.3(单位:m).请你根据所得的解析式,回答下列问题:
(1)球在空中运行的最大高度为多少米;
(2)如果一名学生跳投时,球出手离地面的高度为2.25m,请问他距篮球筐中心的水平距离是多少?
(1)由题意得:
y=-
1
5
x2+
2
5
x+3.3,
=-
1
5
(x2-2x)+3.3,
=-
1
5
(x-1)2+3.3+
1
5

=-
1
5
(x-1)2+3.5,
最大高度为3.5米;

(2)当y=3.05时,x=2.5或x=-0.5(负值舍去),
当y=2.25时,x=3.5或x=-1.5(正值舍去),
∴他距篮球筐中心的水平距离是4米.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC,可得下列结论:①∠PCB=30°;②点P的坐标是(
3
2
3
2
);③若P、C两点在抛物线y=-
4
3
x2+bx+c
上,则b的值是-
3
,c的值是1;④在③中的抛物线CP段(不包括C、P两点)上,存在一点Q,使四边形QCAP的面积最大,最大值为
9
3
16
.其中正确的有(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=
2
3
x2
的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An-1BnAnCn都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠An-1BnAn=60°,菱形An-1BnAnCn的周长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一次函数y=-2x的图象与二次函数y=-x2+3x图象的对称轴交于点B.
(1)写出点B的坐标______;
(2)已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一座抛物线拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部3m时,水面宽6m,当水位上升1m时,水面宽多少m(结果保留根号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:点P(a+1,a-1)关于x轴的对称点在反比例函数y=-
8
x
(x>0)的图象上,y关于x的函数y=k2x2-(2k+1)x+1的图象与坐标轴只有两个不同的交点A﹑B,求P点坐标和△PAB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

同步练习册答案