精英家教网 > 初中数学 > 题目详情
如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC,可得下列结论:①∠PCB=30°;②点P的坐标是(
3
2
3
2
);③若P、C两点在抛物线y=-
4
3
x2+bx+c
上,则b的值是-
3
,c的值是1;④在③中的抛物线CP段(不包括C、P两点)上,存在一点Q,使四边形QCAP的面积最大,最大值为
9
3
16
.其中正确的有(  )
A.①②③B.①②④C.①③④D.②③④

在Rt△OAC中,OA=
3
,OC=1,则∠OAC=30°,∠OCA=60°;
根据折叠的性质知:OA=AP=
3
,∠ACO=∠ACP=60°;
①∵∠BCA=∠OAC=30°,且∠ACP=60°,
∴∠PCB=30°,故①正确;
②过P作PD⊥OA于D;
Rt△PAD中,∠PAD=60°,AP=
3

∴OD=AD=
3
2
,PD=
3
2

所以P(
3
2
3
2
),故②正确;
③将P、C代入抛物线的解析式中,得:
-1+
3
2
b+c=
3
2
c=1

解得
b=
3
c=1

故③错误;
④过Q作QMy轴,交CP于M;
由③知y=-
4
3
x2+
3
x+1,
由P(
3
2
3
2
),C(0,1)易求得直线PC:y=
3
3
x+1;
设M(a,
3
3
a+1),
则Q(a,-
4
3
a2+
3
a+1),则:
QM=-
4
3
a2+
3
a+1-(
3
3
a+1)=-
4
3
a2+
2
3
3
a,
故S△QPC=
1
2
QM•|xP|=
1
2
×(-
4
3
a2+
2
3
3
a)×
3
2
=-
3
3
a2+
1
2
a,
由于S△APC=S△AOC=
3
2

故四边形QCAP的面积S=S△QPC+S△APC=-
3
3
a2+
1
2
a+
3
2

则Smax=
4×(-
3
3
3
2
-
1
4
4×(-
3
3
)
=
9
3
16

故④正确;
所以正确的结论为①②④.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=x2-3x-4的图象交x轴于A、B两点.
(1)若点P在线段AB上运动,作PQ⊥x轴,交抛物线于点Q,求PQ的最大值;
(2)已知点D(5,6)在抛物线上,若点M在线段AD上运动,作MN⊥x轴,交抛物线于点N,求MN的最大值;
(3)在(2)的运动过程中,求△ADN面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点(0,-3),且顶点坐标为(-1,-4).
(1)求该二次函数的解析式;
(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线的方程C1:y=-
1
m
(x+2)(x-m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:一次函数y=-x+m的图象与二次函数y=ax2+bx-4的图象交于x轴上一点A,且交y轴于点B,点A的坐标为(-2,0).
(1)求一次函数的解析式;
(2)设二次函数y=ax2+bx-4的对称轴为直线x=n(n<0),n是方程2x2-3x-2=0的一个根,求二次函数的解析式;
(3)在(2)条件下,设二次函数交y轴于点D,在x轴上有一点C,使以点A、B、C组成的三角形与△ADB相似.试求出C点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,某校小农场要盖一排三间长方形的羊圈,打算一面利用一堵旧墙,其余各面用木棍围成栅栏,该校计划用木棍围出总长为24m的栅栏、设每间羊圈的长为xm.
(1)请你用含x的关系式来表示围成三间羊圈所利用的旧墙的总长度L=______,三间羊圈的总面积S=______;
设宽为x,(2)S可以看成x的______,这里自变量x的取值范围是______;
(3)请计算,当羊圈的长分别为2m、3m、4m和5m时,羊圈的总面积分别为______m2、______m2______m2、______m2,在这些数中,x取______m时,面积S最大.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是(  )
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

体育课上,老师训练学生的项目是投篮,假设一名同学投篮后,篮球运行的轨迹是一段抛物线,将所得轨迹形成的抛物线放在如图所示的坐标系中,得到解析式为y=-
1
5
x2+
2
5
x+3.3(单位:m).请你根据所得的解析式,回答下列问题:
(1)球在空中运行的最大高度为多少米;
(2)如果一名学生跳投时,球出手离地面的高度为2.25m,请问他距篮球筐中心的水平距离是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.
型 号
金 额
投资金额x(万元)
Ⅰ型设备Ⅱ型设备
x5x24
补贴金额y(万元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2
(1)分别求y1和y2的函数解析式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.

查看答案和解析>>

同步练习册答案