精英家教网 > 初中数学 > 题目详情

如图,等边△ABC中,CD平分∠ACB,DE∥BC.
求证:DE=DB.

证明:∵△ABC是等边三角形,
∴∠ACB=∠B=60°,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∵DE∥BC,
∴∠EDC=∠DCB,
∴∠EDC=∠ECD,
∴DE=CE,
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠ACB,
∴∠AED=∠ADE,
∴AE=AD,
∵AB=AC,
∴BD=CE,
∴DE=DB.
分析:根据等边三角形性质求出AB=AC,根据平行线性质求出AD=AE,推出BD=BE,根据平行线性质和等腰三角形的判定求出DE=CE,即可推出答案.
点评:本题主要考查对等腰三角形的性质和判定,平行线的性质,等边三角形的性质等知识点的理解和掌握,能推出DE=CE和BD=CE是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、如图,等边△ABC中,E,D在AB,AC上,且EB=AD,BD与EC交于点F,则∠DFC=
60
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.
(1)求证:AE=CF;
(2)G为CF延长线上一点,连接BG.若BG=5,BC=8,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,D、E、F分别是各边上的一点,且AD=BE=CF.
求证:△DEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,D是BC上一点,以AD为边作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°,求∠FDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC中,AD=CE,BD和AE相交于F,BG⊥AE垂足为G,求∠FBG的度数.

查看答案和解析>>

同步练习册答案