精英家教网 > 初中数学 > 题目详情
如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.
(1)试判断直线DE与⊙O的位置关系?并说明理由;
(2)若⊙O的半径为
3
,DE=3,求AE的长.
(1)直线DE与⊙相切.理由如下:
连接OE,BE,
∵AB是直径.
∴BE⊥AC.
∵D是BC的中点,
∴DE=DB.
∴∠DBE=∠DEB.
又OE=OB,
∴∠OBE=∠OEB.
∴∠DBE+∠OBE=∠DEB+∠OEB.
即∠ABD=∠OED.
但∠ABC=90°,
∴∠OED=90°,
又∵EO为⊙O半径,
∴DE是⊙O的切线.

(2)∵∠ABC=90°,AB=2
3
,BC=2DE=6,
∴AC=4
3

∴BE=3.
∴AE=
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)先化简,再求值:(
2
a-1
-
1
a+1
)÷
1
a+1
,其中a=
2
+1;
(2)请你类比一条直线和一个圆的三种位置关系,在图①、②、③中,分别各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,矩形铁片ABCD的长为2a,宽为a;为了要让铁片能穿过直径为
89
10
a
的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);
(1)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是______,给出证明,并通过计算说明此时铁片都能穿过圆孔;
(2)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;
①当BE=DF=
1
5
a
时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;
②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:∠PCB=∠A;
(2)求证:PC是⊙O的切线;
(3)若点M是弧AB的中点,CM交AB于点N,求证:AM2=MN•MC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,AE=
3

(1)求
EF
的长;
(2)若AD=
3
+5
,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线相交于D,和⊙O相交于E.如果AC平分∠DAB,
(1)求证:∠ADC=90°;
(2)若AB=2r,AD=
8
5
r,求DE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.
(1)求证:AD是圆O的切线;
(2)若PC是圆O的切线,BC=8,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB,BC,CD分别与⊙O相切于E,F,G,且ABCD,BO=6cm,CO=8cm.求BC的长.

查看答案和解析>>

同步练习册答案