精英家教网 > 初中数学 > 题目详情

阅读:对于二次三项式ax2+bx+c(a≠0),当b2-4ac≥0时,ax2+bx+c在实数范围内可以分解因式.
例:对于2x2-5x+1,因为:(-5)2-4×2×1>0,所以:2x2-5x+1在实数范围内可以分解因式.
问题:当m取什么值的时候,2x2-6x+(1-m)在实数范围内可以分解因式.

解:∵2x2-6x+(1-m)的二次项系数a=2,一次项系数b=-6,常数项是c=1-m,
∴b2-4ac=(-6)2-4×2•(1-m)=4m+28,
由已知得:4m+28≥0,
解得,m≥-7;
∴当m≥-7时,2x2-6x+(1-m)在实数范围内可以分解因式.
分析:根据例题可知,当b2-4ac≥0时,二次三项式可以在实数范围内分解因式.
点评:本题考查了一元二次方程是根的判别式、实数范围内分解因式.此题培养学生信息获取能力,是信息给予题,读懂题目信息是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

24、阅读并解决问题.
对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像这样,先添-适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是实数,试比较x2-4x+5与-x2+4x-4的大小,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

20、阅读下列材料,并解答相应问题:
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax-3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有:
x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-(2a)2
=(x+2a+a)(x+a-2a)
=(x+3a)(x-a).
(1)像上面这样把二次三项式分解因式的数学方法是.
配方法

(2)这种方法的关键是.
配成完全平方式

(3)用上述方法把m2-6m+8分解因式.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、阅读:对于二次三项式ax2+bx+c(a≠0),当b2-4ac≥0时,ax2+bx+c在实数范围内可以分解因式.
例:对于2x2-5x+1,因为:(-5)2-4×2×1>0,所以:2x2-5x+1在实数范围内可以分解因式.
问题:当m取什么值的时候,2x2-6x+(1-m)在实数范围内可以分解因式.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax-3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax-3a2=x2+2ax-3a2+a2-a2
=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像上面这样把二次三项式分解因式的方法叫做添(拆)项法.
(1)请用上述方法求出x2-4xy+3y2=0(满足xy≠0,且x≠y)中y与x的关系式.
(2)利用上述关系式求
x
y
-
y
x
-
x2+y2
xy
的值.

查看答案和解析>>

同步练习册答案