精英家教网 > 初中数学 > 题目详情
已知:二次函数y=a(x-1)2+4的图象如图所示,抛物线交y轴于点C,交x轴于A、B两点,用A点坐标为(-1,0).
(1)求a的值及点B的坐标.
(2)连接AC、BC,E是线段OC上的动点(不与O、C两点重合),过E点作直线PE⊥y轴交线段AC于点P,交线段BC于点Q.求证:
CE
CO
=
PQ
AB

(3)设E点的坐标为(0,n),在线段AB上是否存在一点R,使得以P、Q、R为顶点的三角形与△B精英家教网OC相似?若存在,求出n的值,并画出相应的示意图;若不存在,请说明理由.
分析:(1)把A点坐标为(-1,0)代入y=a(x-1)2+4,可求得a=-1,然后令y=0,得到-(x-1)2+4=0,解方程得到x1=-1,x2=3,即可得到B点坐标;
(2)由直线PE⊥y轴交线段AC于点P,交线段BC于点Q,得到PQ∥AB,则△CPQ∽△CAB,即可得到结论;
(3)利用待定系数法分别求出直线BC的解析式为:y=-x+3;直线AC的解析式为:y=-3x+3;由E点的坐标为(0,n),0<n<3,得到P点坐标为(
n
3
-1,n),Q点的坐标为(3-n,n),则QP=3-n-(
n
3
-1)=4-
4n
3
;若以P、Q、R为顶点的三角形与△BOC相似,则以P、Q、R为顶点的三角形为等腰直角三角形,然后分类讨论:当∠PQR=90°,QR=QP,得到n=4-
4n
3
;当∠PRQ=90°,RP=RQ,过R作RH⊥PQ于H,根据HR=
1
2
PQ,得到n=
1
2
(4-
4n
3
),分别解方程可得到n的值和对应的R点的坐标.
解答:(1)解:把A点坐标为(-1,0)代入y=a(x-1)2+4,得a(-1-1)2+4=0,解得a=-1,
∴y=-(x-1)2+4,
令y=0,-(x-1)2+4=0,
解得x1=-1,x2=3,
∴B点坐标为(3,0);

(2)证明:∵直线PE⊥y轴交线段AC于点P,交线段BC于点Q,
∴PQ∥AB,
∴△CPQ∽△CAB,
CE
CO
=
PQ
AB


(3)解:在线段AB上存在一点R,使得以P、Q、R为顶点的三角形与△BOC相似.理由如下
对于y=-(x-1)2+4,令x=0,y=3,
∴C点坐标为(0,3),
∴△OBC为等腰直角三角形,精英家教网
设直线BC的解析式为:y=kx+b,
把B(3,0),C(0,3)代入得,
3k+b=3
b=3

解得k=-1,b=3,
∴直线BC的解析式为:y=-x+3;
同理可得直线AC的解析式为:y=-3x+3;
∵E点的坐标为(0,n),0<n<3,
∴P点坐标为(
n
3
-1,n),Q点的坐标为(3-n,n),
∴QP=3-n-(
n
3
-1)=4-
4n
3

若以P、Q、R为顶点的三角形与△BOC相似,
∴以P、Q、R为顶点的三角形为等腰直角三角形,
当∠PQR=90°,QR=QP,如图,
∵PQ∥AB,
∴QR⊥AB,
∴QR=OE=n,
∴n=4-
4n
3

解得n=
12
7

∴R的坐标为(
9
7
,0),
当∠QPR=90°,PQ=PR,同理可得n=
12
7
,得P点坐标为(-
3
7
12
7
),则R点坐标为(-
3
7
,0);
当∠PRQ=90°,RP=RQ,过R作RH⊥PQ于H,如图,
∴HR=
1
2
PQ,
∴n=
1
2
(4-
4n
3
),
解得n=
6
5

∴P点的坐标为(-
3
5
6
5
),Q点的坐标为(
9
5
6
5
),
∴R点的坐标为(
3
5
,0).
所以当n=
12
7
,R的坐标为(
9
7
,0)或(-
3
7
,0);当n=
6
5
,R点的坐标为(
3
5
,0).
点评:本题考查了求二次函数与坐标轴的交点坐标的方法;也考查了利用待定系数法求直线解析式、三角形相似的判定与性质以及等腰直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:二次函数的表达式为y=2x2+4x-1.
(1)设这个函数图象的顶点坐标为P,与y轴的交点为A,求P、A两点的坐标;
(2)将二次函数的图象向上平移1个单位,设平移后的图象与x轴的交点为B、C(其中点B在点C的左侧),求B、C两点的坐标及tan∠APB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足
1
AO
-
1
OB
=
2
CO

(1)求这个二次函数的解析式;
(2)是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k、b应满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴精英家教网交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值为
3
3

(2)求出这个二次函数的解析式;
(3)当0<x<3时,则y的取值范围为
-1≤y<3
-1≤y<3

查看答案和解析>>

同步练习册答案