精英家教网 > 初中数学 > 题目详情
若把函数y=x的图象用Exx)记,函数y=2x+1的图象用Ex,2x+1)记,……则Ex)图象上的最低点是__    
(1,2)

试题分析:由题意可知此时要求满足在最小,所以需要化简分析可知,

故最低点是(1,2)
点评:本题属于对函数最值的基本公式和函数最值的理解和运用
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:是方程的两个实数根,且,抛物线的图像经过点A()、B().

(1)求这个抛物线的解析式;
(2) 设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D
试求出点CD的坐标和△BCD的面积;
(3) P是线段OC上的一点,过点PPH轴,与抛物线交于H点,
若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0),
(1)求抛物线C1的解析式;
(2)如图1,将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P,求△DBP的面积;
(3)如图2,连接AP,过点B作BC⊥AP于C,设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC·(AC+EC)为定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列二次函数中,顶点坐标是(2,-3)的函数解析式为(   )
A.y=(x-2)2+3 B.y=(x+2)2+3C.y=(x-2)2-3D.y=(x+2)2-3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线与x轴两交点分别是(-1,0),(3,0)另有一点(0,-3)也在图象上,则该抛物线的关系式________________ .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系

(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是椒江某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下。建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下列材料:
我们知道,一次函数ykxb的图象是一条直线,而ykxb经过恒等变形可化为直线的另一种表达形式:AxBxC=0(ABC是常数,且AB不同时为0).如图1,点Pmn)到直线lAxBxC=0的距离(d)计算公式是:d 

例:求点P(1,2)到直线y x的距离d时,先将y x化为5x-12y-2=0,再由上述距离公式求得d  
解答下列问题:
如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线yx2-4x+5上的一点M(3,2).

(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的函数解析式为yax2b x-3ab<0),若这条抛物线经过点(0,-3),方程ax2b x-3a=0的两根为x1x2,且|x1x2|=4.
⑴求抛物线的顶点坐标.
⑵已知实数x>0,请证明x≥2,并说明x为何值时才会有x=2.

查看答案和解析>>

同步练习册答案