| A. | (0,0) | B. | (1,0) | C. | (3,0) | D. | (5,0) |
分析 作P点关于x 的对称点P′,根据轴对称的性质,PM=P′M,MP+MQ的最小值可转化为QP′的最小值,再求出P′Q所在的直线的解析式,即可求出直线与x轴的交点.
解答
解:作P点关于x 的对称点P′,
∵P点的坐标为(0,1),
∴P′(0,-1)PM=P′M,
连接P′Q,则P′Q与x轴的交点应为满足QM+PM的值最小,
即为M点.
设P′Q所在的直线的解析式为:y=kx+b,
于是有方程组$\left\{\begin{array}{l}{-1=b}\\{4=5k+b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=1}\\{b=-1}\end{array}\right.$.
∴y=x-1,
当y=0时,x=1,
∴M(1,0).
故选B.
点评 本题考查了轴对称---最短路径问题和待定系数法求一次函数解析式,明确轴对称的定义,会将最小值问题转化为轴对称的问题是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a$≥-\frac{1}{4}$且a≠0 | B. | a$≤-\frac{1}{4}$ | C. | a$≥-\frac{1}{4}$ | D. | a$≤-\frac{1}{4}$且a≠0 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com