精英家教网 > 初中数学 > 题目详情
如图,已知双曲线y=
3
x
与矩形OABC的对角线OB相交于点D,且DB:OD=2:3,则矩形OABC的面积为
25
3
25
3
分析:过D点作DE⊥OA,DF⊥OC,垂足为E、F,由双曲线的解析式可知S矩形OEDF=3,由于D点在矩形的对角线OB上,可知矩形OEDF∽矩形OABC,可求相似比为0D:OB=3:5,由相似多边形的面积比等于相似比的平方求解.
解答:解:过D点作DE⊥OA,DF⊥OC,垂足为E、F,
∵D点在双曲线y=
3
x
上,
∴S矩形OEDF=xy=3,
又∵DB:OD=2:3,
∴0D:OB=3:5,
∵D点在矩形的对角线OB上,
∴矩形OEDF∽矩形OABC,
S矩形OEDF
S矩形OABC
=(
OD
OB
2=
9
25

解得S矩形OABC=3×
25
9
=
25
3

故答案为:
25
3
点评:本题考查了反比例函数的综合运用.关键是过D点作坐标轴的垂线,构造矩形,得出其面积为反比例函数的系数的绝对值,再根据多边形的相似中面积的性质求面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知双曲线y1=
1
x
(x>0)
y2=
4
x
(x>0)
,点P为双曲线y2=
4
x
上的一点,且PA⊥x轴于点A,PB⊥y轴于点B,PA、PB分别依次交双曲线y1=
1
x
于D、C两点,则△PCD的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济南)如图,已知双曲线y=
kx
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)如图,已知双曲线y=
k
x
(x>0)经过矩形OABC的边AB、BC上的点F、E,其中CE=
1
3
CB,AF=
1
3
AB,且四边形OEBF的面积为2,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知双曲线y=
k
x
与直角三角形OAB的斜边OB相交于D,与直角边AB相交于C.若BC:CA=2:1,△OAB的面积为8,则△OED的面积为(  )

查看答案和解析>>

同步练习册答案