精英家教网 > 初中数学 > 题目详情

如图所示,已知:∠ABE+∠DEB=180°,∠1=∠2,试说明∠F与∠G的关系,并说明理由.

解:∠F=∠G,理由如下:
∵∠ABE+∠DEB=180°,
∴AC∥DE,
∴∠CBE=∠DEB,
∵∠1=∠2,
∴∠FBE=∠GEB,
∴BF∥GE,
∴∠F=∠G.
分析:先由同旁内角互补,两直线平行得出AC∥DE,再根据两直线平行,内错角相等得出∠CBE=∠DEB,由∠1=∠2,得出∠FBE=∠GEB,然后根据根据平行线的判定与性质即可得出∠F=∠G.
点评:本题考查了平行线的判定与性质,用到的知识点:同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.注意判定与性质不要混淆.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

52、如图所示,已知AB=AC,EB=EC,AE的延长线交BC于D,那么图中的全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图所示,已知⊙O中,弦AB,CD相交于点P,AP=6,BP=2,CP=4,则PD的长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知等边△ABC的两个顶点的坐标为A(-4,0),B(2,0).
试求:
(1)C点的坐标;
(2)△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图所示,已知EA⊥AB于点A,CD⊥DF于点D,AB∥CD,请判断EA与DF的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知等边△ABC的边长为a,P是△ABC内一点,PD∥AB,PE∥BC,PF∥AC,点D、E、F分别在BC、AC、AB上,猜想:PD+PE+PF=
a
a
,并证明你的猜想.

查看答案和解析>>

同步练习册答案