精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于F,点E是AB的中点,连接EF.
(1)求证:2EF=BD,
(2)四边形BDFE的面积为6,求△ABD的面积.
分析:(1)根据等腰三角形性质推出F为AD中点,根据三角形的中位线定理推出即可;
(2)根据三角形中位线推出EF∥BD,推出△AEF∽△ABD且两三角形相似比K=1:2,得出面积比是
1
4
,代入求出即可.
解答:(1)证明:∵DC=AC,CF为∠ACB的平分线,
∴AF=DF,
∵AE=EB,AF=DF,
∴EF为△ABD的中位线,
∴2EF=BD.

(2)解:∵EF为△ABD的中位线,
∴EF∥BD,2EF=BD,
∴△AEF∽△ABD
∴两三角形相似比K=1:2,
S△AEF
S△ABD
=K2=
1
4

则4(S△ABD-6)=S△ABD
解得:S△ABD=8.
点评:本题考查了三角形的中位线,相似三角形的性质和判定,等腰三角形的性质的应用,关键是求出EF是三角形ABD的中位线和推出△AEF∽△ABD,主要烤箱学生运用性质进行推理和计算的能力,注意:相似三角形的面积比等于相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案