精英家教网 > 初中数学 > 题目详情

已知如图,点P是反比例函数上的任意一点,过点P作x轴的垂线,垂足为A,连接OP.若△PAO的面积是3,那么该反比例函数在第二象限的表达式为________.

y=-(x<0)
分析:设比例函数的解析式为y=(k≠0),再根据反比例函数的图象在第二象限判断出k的符号,由反比例函数系数k的几何意义求出k的值即可.
解答:设比例函数的解析式为y=(k≠0),
∵反比例函数的图象在第二象限,
∴k<0,
∵PA⊥x轴,S△PAO=3,
=3,即k=-6,
∴该反比例函数在第二象限的表达式为:y=-(x<0).
故答案为:y=-(x<0).
点评:本题考查的是反比例函数系数k的几何意义,即反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知:点A(-1,1)绕原点O顺时针旋转90°后刚好落在反比例函数y=
k
x
图象上点B处.
(1)求反比函数的解析式;
(2)如图2,直线OB与反比例函数图象交于另一点C,在x轴上是否存在点D,使△DBC是等腰三角形?若不存在,请说明不存在的理由;如果存在,请求所有符合条件的点D的坐标;
(3)如图3,直线y=-x+
2
与x轴、y轴分别交于点E、F,点P为反比例函数在第一象限图象上一动点,PG⊥x轴于G,交线段EF于M,PH⊥y轴于H,交线段EF于N.当点P运动时,∠MON的度数是否改变?如果改变,试说明理由;如果不变,请求其度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,已知:点A(-1,1)绕原点O顺时针旋转90°后刚好落在反比例函数数学公式图象上点B处.
(1)求反比函数的解析式;
(2)如图2,直线OB与反比例函数图象交于另一点C,在x轴上是否存在点D,使△DBC是等腰三角形?若不存在,请说明不存在的理由;如果存在,请求所有符合条件的点D的坐标;
(3)如图3,直线数学公式与x轴、y轴分别交于点E、F,点P为反比例函数在第一象限图象上一动点,PG⊥x轴于G,交线段EF于M,PH⊥y轴于H,交线段EF于N.当点P运动时,∠MON的度数是否改变?如果改变,试说明理由;如果不变,请求其度数.

查看答案和解析>>

同步练习册答案