精英家教网 > 初中数学 > 题目详情

如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.

(1)证明△COF是等腰三角形,并求出CF的长;

(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?


解:(1)∵∠ACB=90°,点O是AB的中点,

∴OC=0B=OA=5.

∴∠OCB=∠B,∠ACO=∠A.

∵∠DOE=∠B,

∴∠FOC=∠OCF.

∴FC=FO.

∴△COF是等腰三角形.

过点F作FH⊥OC,垂足为H,如图1,

∵FC=FO,FH⊥OC,

∴CH=OH=,∠CHF=90°.

∵∠HCF=∠B,∠CHF=∠BCA=90°,

∴△CHF∽△BCA.

=

∵CH=,AB=10,BC=6,

∴CF=

∴CF的长为

(2)①若△OMN∽△BCO,如图2,

则有∠NMO=∠OCB.

∵∠OCB=∠B,

∴∠NMO=∠B.

∵∠A=∠A,

∴△AOM∽△ACB.

=

∵∠ACB=90°,AB=10,BC=6,

∴AC=8.

∵AO=5,AC=8,AB=10,

∴AM=

∴CM=AC﹣AM=

②若△OMN∽△BOC,如图3,

则有∠MNO=∠OCB.

∵∠OCB=∠B,

∴∠MNO=∠B.

∵∠ACO=∠A,

∴△CON∽△ACB.

==

∵BC=6,AB=10,AC=8,CO=5,

∴ON=,CN=

过点M作MG⊥ON,垂足为G,如图3,

∵∠MNO=∠B,∠MON=∠B,

∴∠MNO=∠MON.

∴MN=MO.

∵MG⊥ON,即∠MGN=90°,

∴NG=OG=

∵∠MNG=∠B,∠MGN=∠ACB=90°,

∴△MGN∽△ACB.

=

∵GN=,BC=6,AB=10,

∴MN=

∴CM=CN﹣MN==

∴当CM的长是时,△OMN与△BCO相似.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


下列运算正确的是(  )

 

A.

(﹣2mn)2=4m2n2

B.

y2+y2=2y4

C.

(a﹣b)2=a2﹣b2

D.

m2+m=m3

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.

(1)求证:BE=CE;

(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:


甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S2=0.9,S2=1.1,则甲、乙两支仪仗队的队员身高更整齐的是  (填“甲”或“乙”).

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,一次函数y=x+b的图象与反比例函数y=(x>0)的图象交于点A(2,1),与x轴交于点B.

(1)求k和b的值;

(2)连接OA,求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:


将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是(  )

 

A.

y=(x﹣1)2+2

B.

y=(x+1)2+2

C.

y=(x﹣1)2﹣2

D.

y=(x+1)2﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:


写出一个图象经过点(﹣1,2)的一次函数的解析式 

查看答案和解析>>

科目:初中数学 来源: 题型:


分解因式:ab﹣2a= 

查看答案和解析>>

科目:初中数学 来源: 题型:


已知多项式x2+(2m-1)x+1是关于x的完全平方式,则m=       ;

查看答案和解析>>

同步练习册答案