精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,已知抛物线C1:y1=-x2+2x.
(1)将抛物线C1先向右平移2个单位,再向上平移1个单位,得到抛物线C2,求抛物线C2的顶点P的坐标及它的解析式.
(2)如果x轴上有一动点M,那么在两条抛物线C1、C2上是否存在点N,使得以点O、P、M、N为顶点的四边形是平行四边形(OP为一边)?若存在,求出点N的坐标;若不存在,请说明理由.
分析:(1)先利用配方法,把y1化为顶点式,直接利用二次函数平移的规律求出平移后的二次函数的顶点坐标问题得解;
(2)假设符合条件的N点存在,利用平行四边形的性质和三角形全等,找出点N到x轴的距离,即抛物线的纵坐标,代入解析式,解方程解决问题即可.
解答:解:(1)依题意抛物线:y1=-x2+2x=-(x-1)2+1,
∴其顶点坐标为(1,1)
当把C1向右平移2个单位,再向上平移1个单位时,
抛物线C2的顶点P的坐标为(3,2)
∴C2的解析式为y2=-(x-3)2+2;

(2)符合条件的N点存在.
如图:若四边形OPMN为符合条件的平行四边形,则OP∥MN,且OP=MN,
∴∠POA=∠BMN,作PA⊥x轴于点A,NB⊥x轴于点B
∴∠PAO=∠MBN=90°,
∴△POA≌△NMB(AAS),
∴PA=BN,
∵点P的坐标为(3,2),
∴NB=PA=2,
∵点N在抛物线y1、y2上,且P点为y1、y2的最高点
∴符合条件的N点只能在x轴下方,
当点N在C1上时,y1=-2,即-2=-(x-1)2+1,
解得:x=1±
3

∴N1(1+
3
,-2),N2(1-
3
,-2);
当点N在C2上时,y2=-2,即=-(x-3)2+2=-2,
解得:x=5或1,
∴N3(5,-2),N4(1,-2),
∴满足条件的点N有4个,分别是N1(1+
3
,-2)、N2(1-
3
,-2)、N3(5,-2)、N4(1,-2).
点评:此题考查利用平移的规律求二次函数顶点式解析式,利用平行四边形的性质、三角形的全等与性质以及二次函数图象上点的坐标特征解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案