【题目】对于平面内任意一个角的“夹线圆”,给出如下定义:如果一个圆与这个角的两边都相切,则称这个圆为这个角的“夹线圆”.例如:在平面直角坐标系xOy中,以点(1,1)为圆心,1为半径的圆是x轴与y轴所构成的直角的“夹线圆”.
(1)下列各点中,可以作为x轴与y轴所构成的直角的“夹线圆”的圆心的点是哪些;
A(2,2),B(3,1),C(-1,0),D(1,-1)
(2)若⊙P为y轴和直线 l:所构成的锐角的“夹线圆”,且⊙P的半径为1,求点P的坐标.
(3)若 ⊙Q为x轴和直线所构成的锐角的“夹线圆”,且⊙Q的半径,直接写出点Q横坐标的取值范围.
【答案】(1)A,D; (2)P点坐标为,(3)
【解析】
(1)由点A的横纵坐标相等及点D的横纵坐标的绝对值相等,可得出点A,D能作为x轴与y轴所构成的直角的“夹线圆”的圆心;
(2)过P点作PE⊥y轴于点E,PF⊥直线l于点F,连PO,设直线l与x轴夹角为α,由直线l的解析式可得出α=30°及∠EOF=60°,由⊙P与y轴及直线OF均相切可得出∠EOP=30°,结合EP=1可求出OE=,进而可得出点E的坐标;
(3)过Q点作QM⊥x轴于点M,QN⊥直线y=-x+2于点N,延长MQ交直线y=-x+2于点G,设直线y=-x+2与x轴交于点S,利用一次函数图象上点的坐标特征可得出点S的坐标,由∠MSG=30°,∠MGS=60°可得出MS=MGtan60°=(2+)r,结合1≤r≤2可得出MS的取值范围,再将其代入xQ=6+MS或xQ=6-MS即可得出点Q横坐标xQ的取值范围.
(1))∵2=2,1=|-1|,
∴点A,D能作为x轴与y轴所构成的直角的“夹线圆”的圆心.
故答案为:点A, D能作为x轴与y轴所构成的直角的“夹线圆”的圆心.
(2)如图:过P点作PA⊥y轴于点A,PB⊥l于B,连PO.
∵点B为直线上一点
∴设B点坐标为(x,)
设直线与x轴夹角为
∴直线 l与x轴的夹角为30°
∴∠AOB=60°
又∵⊙P与x轴及直线OB均相切,
∴OP平分∠AOB
∴∠AOP=30°
又∵AP=1
∴P点坐标为
同理,当P点在第三象限时,P点坐标为
(3)
理由:如图2,过Q点作QM⊥x轴于点M,QN⊥直线y=-x+2
于点N,延长MQ交直线y=-x+2于点G,设直线y=-x+2与x轴交于点S.
当y=0时,有-x+2=0,
解得:x=6,
∴点S的坐标为(6,0).
∵∠MSG=30°,
∴∠MGS=60°,
∴MG=MQ+QG=r+ =r ,
∴MS=MGtan60°=(2+)r,
∵⊙Q的半径1≤r≤2,
∴2+≤MS≤4+2,
∴2-2≤6-MS≤4-,8+≤6+MS≤10+2,
∴点Q横坐标xQ的取值范围为:2-2≤xQ≤4-或8+≤xQ≤10+2.
科目:初中数学 来源: 题型:
【题目】阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:
(1)若该社区有居民900人,试估计对消防知识“特别熟悉”的居民人数;
(2)该社区的管理人员有男、女个2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.
(1)分别求yA、yB关于x的函数关系式;
(2)当A组材料的温度降至120℃时,B组材料的温度是多少?
(3)在0<x<40的什么时刻,两组材料温差最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣4x+3.
(1)求该二次函数与x轴的交点坐标和顶点;
(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在测量“河流宽度”的综合与实践活动中,小李同学设计的方案及测量数据如下:在河对岸边选定一个目标点A,在近岸取点B,C,D (点B,C,D在同一条直线上),AB⊥BD,∠ACB=45°,CD=20米,且.若测得∠ADB=25°,请你帮助小李求河的宽度AB.(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,结果精确到0.1米).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3的3个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为6,则可获得50元代金券一张;若所得的数字之和为5,则可获得30元代金券一张;若所得的数字之和为4,则可获得15元代金券一张;其它情况都不中奖.
(1)请用列表或树状图的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来.
(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=4,则图中阴影部分的面积为( )
A. + B. +2 C. + D. 2+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是
A.5个 B.4个 C.3个 D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O在边AC上,⊙O与△ABC的边AC,AB分别切于C、D两点,与边AC交于点E,弦与AB平行,与DO的延长线交于M点.
(1)求证:点M是CF的中点;
(2)若E是的中点,连结DF,DC,试判断△DCF的形状;
(3)在(2)的条件下,若BC=a,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com