【题目】如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)试问△OBC与△ABD全等吗?并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;
(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m
【答案】(1)两个三角形全等,理由见解析;(2)见解析;(3)m=.
【解析】
(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;
(2)由1知,△OBC≌△ABD∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA中,有EO=OAtan60°=,即可求得点E的坐标;
(3)由相交弦定理知1m=nAG,即AG=,由切割线定理知,OE2=EGEF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2-)(2+n),就可求得m与n关系.
(1)两个三角形全等.
∵△AOB、△CBD都是等边三角形,
∴OBA=∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC,
即∠OBC=∠ABD;
∵OB=AB,BC=BD,
△OBC≌△ABD;
(2)点E位置不变.
∵△OBC≌△ABD,
∴∠BAD=∠BOC=60°,
∠OAE=180°﹣60°﹣60°=60°,
在Rt△EOA中,EO=OAtan60°=,
或∠AEO=30°,得AE=2,
∴OE=,
∴点E的坐标为(0,);
(3)∵AC=m,AF=n,由相交弦定理知1m=nAG,即AG=,
又∵OC是直径,
∴OE是圆的切线,OE2=EGEF,
在Rt△EOA中,AE==2,
()2=(2﹣)(2+n)
即2n2+n﹣2m﹣mn=0
解得m=.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.
(1)请找出图中一对相似三角形,并证明;
(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某广场有一个小型喷泉,水流从垂直于地面长为1.25米的水管OA喷出,水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为2.5米.建立如图直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=ax2+2x+c,请回答下列问题:
(1)求y与x之间的函数表达式;
(2)求水流的最大高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,以下说法错误的是( )
A. AC=2CDB. AD=2CDC. AD=3BDD. AB=2BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.
(1)如图①,小海同学在作△ABC的外心时,只作出两边BC,AC的垂直平分线得到交点O,就认定点O是△ABC的外心,你觉得有道理吗?为什么?
(2)如图②,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF,连接DE,EF,DF,得到△DEF.若点O为△ABC的外心,求证:点O也是△DEF的外心.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过点D作DE⊥AD交AB于点E,以AE为直径作⊙O
(1)求证:点D在⊙O上;
(2)求证:BC是⊙O的切线;
(3)若AC=6,BC=8,求BE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:点F是BD中点;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=30,高AD=18,作矩形PQRS,使得P,S分别落在AB,AC边上,Q,R落在BC边上.
(1)求证:△APS ∽△ABC;
(2)如果矩形PQRS是正方形,求它的边长;
(3)如果AP∶PB=1∶2,求矩形PQRS的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于点G,F两点,若M,N分别是DG,CE的中点,则MN的长是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com