精英家教网 > 初中数学 > 题目详情
正m边形,正n边形及正p边形各一个内角,其和为360°,则
1
m
+
1
n
+
1
p
的值为
 
分析:根据多边形外角和定理和多边形内角与外角的关系:正m边形一个外角+正n边形一个外角+正p边形一个外角=3组邻补角的和-(正m边形一个内角+正n边形一个内角+正p边形一个内角),可得
360°
m
+
360°
n
+
360°
p
=180°×3-360°,将
1
m
+
1
n
+
1
p
看作一个整体求解即可.
解答:解:根据题意可得
360°
m
+
360°
n
+
360°
p
=180°×3-360°,
360°×(
1
m
+
1
n
+
1
p
)=180°,
1
m
+
1
n
+
1
p
=
1
2

故答案为:
1
2
点评:本题考查了多边形外角和定理和多边形内角与外角的关系,多边形内角与相邻的外角互为邻补角,注意整体思想的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.
(1)图形①中∠B=
 
°,图形②中∠E=
 
°;
(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”.
①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片
 
 张;
②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邯郸一模)尝试探究:
小张在数学实践活动中,画了一个Rt△ABC,使∠ACB=90°,BC=1,AC=2,再以B为圆心,BC为半径画弧交AB于点D,然后以A为圆心以AD长为半径画弧交AC于点E,如图,则AE=
5
-1
5
-1
;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.
拓展延伸:
小张利用上图中的线段AC及点E,接着构造AE=EF=CF,连接AF,得到下图,试完成以下问题:
①求证△ACF∽△FCE
②求∠A的度数;
③求cos∠A

应用迁移:
利用上面的结论,直接写出:
①半径为2的圆内接正十边形的边长为
5
-1
5
-1

②边长为2的正五边形的对角线的长为
5
+1
5
+1

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•青岛模拟)同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=
1
2
a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,请求圆内接正五边形的中心角∠AOB=
72
72
°,及∠ACB=
36
36
°,如图2,请求圆内接正六边形的中心角∠AOB=
60
60
°,及∠ACB=
30
30
°
探究:正n边形每条边所对的中心角∠AOB=
360
n
360
n
°,及∠ACB=
180
n
180
n
°(用n表示)

查看答案和解析>>

同步练习册答案