精英家教网 > 初中数学 > 题目详情
市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如下图所示的一次函数关系.
(1)试求出y与x的函数关系式;
(2)设“健益”超市销售该绿色食品每天获得利润为P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出).
(1)设y=kx+b,由图象可知,
30k+b=400
40k+b=200
(2分)
解之,得
k=-20
b=1000

∴y=-20x+1000(30≤x≤50,不写自变量取值范围不扣分).(4分)

(2)p=(x-20)y
=(x-20)(-20x+1000)
=-20x2+1400x-20000.(6分)
∵a=-20<0,
∴p有最大值.
当x=-
1400
2×(-20)
=35时,p最大值=4500.
即当销售单价为35元/千克时,每天可获得最大利润4500元.(8分)

(3)31≤x≤34或36≤x≤39.(写对一个得1分)(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

二次函数y=
2
3
x2
的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2011在y轴的正半轴上,点B1,B2,B3,…,B2011在二次函数y=
2
3
x2
位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2010B2011A2011都为等边三角形,则△A0B1A1的边长=______,△A2010B2011A2011的边长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=
1
6
x2+bx+c过点A和B,与y轴交于点C.
(1)求点C的坐标,并画出抛物线的大致图象;
(2)点Q(8,m)在抛物线y=
1
6
x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y1=ax2-2ax+b经过A(-1,0),C(0,
3
2
)两点,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P为线段OB上一动点(不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=
2
2
y2,求y2与x的函数关系式,并直接写出自变量x的取值范围;
(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E、G,与(2)中的函数图象交于点F、H.问四边形EFHG能否成为平行四边形?若能,求m、n之间的数量关系;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线y=-
2
3
x+2
与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(-1,0).

(1)求B、C两点的坐标及该抛物线所对应的函数关系式;
(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线ay轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.
①求S与m之间的函数关系式,并写出自变量m的取值范围;
②求S的最大值,并判断此时△OBE的形状,说明理由;
(3)过点P作直线bx轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=x2+bx+c的图象与x轴相交于A,B,点A在原点左边,点B在原点右边,点P(1,m)(m>0)在抛物线上,AB=2,tan∠PAB=
2
5

(1)求m的值;
(2)求二次函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:抛物线y=ax2-4ax+m与x轴交于A、B两点,点A的坐标是(1,0),与y轴交于点C.
(1)求抛物线的对称轴和点B的坐标;
(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式;
(3)在(2)的条件下,设抛物线的顶点为G,连接BG、CG、求△BCG的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

利客来超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系.
(1)试求出y与x的函数关系式;
(2)设利客来超市销售该绿色食品每天获得利润p元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的函数关系式为:y=x2+2(a-1)x+a2-2a(a<0),
(1)若点P(-1,8)在此抛物线上.
①求a的值;
②设抛物线的顶点为A,与y轴的交点为B,O为坐标原点,∠ABO=α,求sinα的值;
(2)设此抛物线与x轴交于点C(x1,0)、D(x2,0),x1,x2满足a(x1+x2)+2x1x2<3,且抛物线的对称轴在直线x=2的右侧,求a的取值范围.

查看答案和解析>>

同步练习册答案