精英家教网 > 初中数学 > 题目详情
二次函数y=
2
3
x2
的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2011在y轴的正半轴上,点B1,B2,B3,…,B2011在二次函数y=
2
3
x2
位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2010B2011A2011都为等边三角形,则△A0B1A1的边长=______,△A2010B2011A2011的边长=______.
作B1A⊥y轴于A,B2B⊥y轴于B,B3C⊥y轴于C.
设等边△A0B1A1、△A1B2A2、△A2B3A3中,AA1=a,BA2=b,CA2=c.
①等边△A0B1A1中,A0A=a,
所以B1A=atan60°=
3
a,代入解析式得
2
3
×(
3
a)2=a,解得a=0(舍去)或a=
1
2
,于是等边△A0B1A1的边长为
1
2
×2=1;
②等边△A1B2A2中,A1B=b,
所以BB2=btan60°=
3
b,B2点坐标为(
3
b,1+b)代入解析式得
2
3
×(
3
b)2=1+b,
解得b=-
1
2
(舍去)或b=1,
于是等边△A1B2A2的边长为1×2=2;
③等边△A2B3A3中,A2C=c,
所以CB3=btan60°=
3
c,B3点坐标为(3c,3+c)代入解析式得
2
3
×(
3
c)2=3+c,
解得c=-1(舍去)或c=
3
2

于是等边△A2B3A3的边长为
3
2
×2=3.
于是△A2010B2011A2011的边长为2011.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1、2,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A.
(1)求此抛物线的解析式;
(2)如图1,若M(0,1),过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合,∠FEH=90°,EFHG,EF=EH=1.直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒.当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;
(3)如图2,抛物线顶点为K,KI⊥x轴于I点,一块三角板直角顶点P在线段KI上滑动,且一直角边过A点,另一直角边与x轴交于Q(m,0),请求出实数m的变化范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系内,O为坐标原点,点A的坐标为(1,0),点B在x轴上且在点A的右端,OA=AB,分别过点A、B作x轴的垂线,与二次函数y=x2的图象交于C、D两点,分别过点C、D作y轴的垂线,交y轴于点E、F,直线CD交y轴于点H.
(1)验证:S矩形OACE:S梯形ECDF=2:9;
(2)如果点A的坐标改为(t,0)(t>0),其他条件不变,(1)的结论是否成立?请说明理由.
(3)如果点A的坐标改为(t,0)(t>0),二次函数改为y=ax2(a>0),其他条件不变,记点C、D的横坐标分别为xC、xD,点H的横坐标为yH,试证明:xCxD=-
1
a
yH

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+2交x轴于A(-1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线解析式及点D坐标;
(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(a),点F、G、H、E分别从正方形ABCD的顶点B、C、D、A同时出发,以1cm/s的速度沿着正方形的边向C、D、A、B运动.若设运动时间为x(s),问:
(1)四边形EFGH是什么图形?证明你的结论;
(2)若正方形ABCD的边长为2cm,四边形EFGH的面积为y(cm2),求y关于x的函数解析式和自变量x的取值范围;
(3)若改变点的连接方式(如图(b)),其余不变.则当动点出发几秒时,图中空白部分的面积为3cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+2.6.已知球网与O点的水平距离为9m,高度为2.43m.
(1)求y与x的关系式;(不要求写出自变量x的取值范围)
(2)球能否越过球网?球会不会出界?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A,O,D三点,图2和图3是把一些这样的小正方形及其内部的抛物线部分经过平移和对称变换得到的.
(1)求a的值;
(2)求图2中矩形EFGH的面积;
(3)求图3中正方形PQRS的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:
v/(km/h)406080100120
s/m24.27.21115.6
(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连接各点;
(2)利用图象验证刹车距离s(m)与车速v(km/h)是否有如下关系:s=
1
1000
v2+
1
100
v0

(3)求当s=9m时的车速v.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如下图所示的一次函数关系.
(1)试求出y与x的函数关系式;
(2)设“健益”超市销售该绿色食品每天获得利润为P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出).

查看答案和解析>>

同步练习册答案