精英家教网 > 初中数学 > 题目详情

作业宝如图,在△ABC中,∠C=120°,AC=BC,AB=6,O为AB的中点,且以O为圆心的半圆与AC,BC分别相切于点D,E;
(1)求半圆O的半径;
(2)求图中阴影部分的面积.

(1)解:连结OD,OC,
∵半圆与AC,BC分别相切于点D,E.
∴OD⊥AC.
∵AC=BC,且O是AB的中点.
∴CO⊥AB,
∴AO=AB=3
∵∠C=120°,
∴∠DCO=60°.
∴∠A=30°.
∴在Rt△AOD中,OD=AO=
即半圆的半径为
(2)设CO=x,则在Rt△AOC中,因为∠A=30°,所以AC=2x,由勾股定理得:
AC2-OC2=AO2,即(2x)2-x2=9,
解得   x=(x=-舍去)
S=×6×-×π×(2=3-π
∴阴影部分的面积为3-π.
分析:(1)连结OD,OC,利用等腰三角形的性质和直角三角形30°角所对的直角边为斜边的一半即可求出半圆的半径;
(2)设CO=x,则在Rt△AOC中,因为∠A=30°,所以AC=2x,由勾股定理得:AC2-OC2=AO2,解方程可求出x的值,再根据阴影部分的面积等于三角形的面积-半圆的面积计算即可.
点评:此题考查了切线的性质、直角三角形的性质、勾股定理的运用以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案