精英家教网 > 初中数学 > 题目详情
已知直线L于直线y=-
34
x+3
平行,且过点(4,3),求直线L与两坐标轴围成的三角形面积.
分析:根据平行直线的解析式的k值相等设直线L的解析式为y=-
3
4
x+b,把点(4,3)的坐标代入求出b的值,再求出直线L与坐标轴的交点坐标,然后根据三角形的面积公式列式计算即可得解.
解答:解:设直线L的解析式为y=-
3
4
x+b,
∵直线L经过点(4,3),
∴-
3
4
×4+b=3,
解得b=6,
∴y=-
3
4
x+6,
令y=0,则-
3
4
x+6=0,解得x=8,
令x=0,则y=6,
∴与x轴交点坐标为(8,0),与y轴交点坐标为(0,6),
直线L与两坐标轴围成的三角形面积:S=
1
2
×8×6=24.
点评:本题考查了两直线平行的问题,熟记平行直线的解析式的k值相等设出直线L的解析式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们已经学过几种基本的尺规作图,如:作一个角的平分线.还有“过一个点作已知直线的垂线”也是一种基本的尺规作图.(一)当这个点在这条已知直线上时,可以像图(1)那样作出,OC就是所要求作的垂线;(二)当这个点在这条已知直线外时,作法如下:在直线AB的另一侧任取一点K;以点C为圆心,CK为半径画弧,交直线AB于点E、F;分别以点E、F为圆心,以略大于
12
EF的长度为半径画弧,两弧相交于点D;经过点C、D画直线m;则直线CD就是所要求作的垂线.
试回答下列问题:
(1)在作图(一)中OC为什么是直线AB的垂线?
(2)(Ⅰ)在作图(二)中,求证:直线m⊥AB.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图所示,已知直线AM、DF,C、E分别在直线AM、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连接CF,再指出CF的中点O,然后连接EO并延长EO和直线AM相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.以下是他的想法,请你填上根据.
小华是这样想的:
因为CF和BE相交于点O,
根据
对顶角相等
得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知EO=BO,
根据
SAS
得出△COB≌△FOE,
根据
全等三角形的对应边相等
得出BC=EF,
根据
全等三角形的对应角相等
得出∠BCO=∠F.
既然∠BCO=∠F,根据
内错角相等
得出AB∥DF,
既然AB∥DF,根据
两直线平行,同旁内角互补
得出∠ACE和∠DEC互补

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,已知直线m平行于直线n,折线ABC是夹在m与n之间的一条折线,则∠1、∠2、∠3的度数之间有什么关系?为什么?

(2)如图2,直线m依然平行于直线n,则此时∠1、∠2、∠3、∠4之间有什么关系?(只需写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线y=-x+6与x轴交于点A,与y轴交于点B,点P为x轴上可以移动的点,且点P在点A的左侧,PM⊥x轴,交直线y=-x+6于点M,有一个动圆O′,它与x轴、直线PM和直线y=-x+6都相切,且在x轴的上方.当⊙O'与y轴也相切时,点P的坐标是
 

查看答案和解析>>

同步练习册答案