精英家教网 > 初中数学 > 题目详情

已知反比例函数y=(k为常数,k≠1)
(1)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(2)若在其图象的每一支上,y随x的增大而减小,求k的取值范围.

(1)5;(2)k>1.

解析试题分析:(1)把y=2代入y=x求出P的坐标,把P的坐标代入反比例函数解析式求出即可.
(2)根据已知得出k-1>0,求出即可.
试题解析:(1)把y=2代入y=x得:x=2,
即P的坐标是(2,2),
把P的坐标代入y=得:2=
解得:k=5.
(2)∵反比例函数y=(k为常数,k≠1),在其图象的每一支上,y随x的增大而减小,
∴k﹣1>0,
∴k>1,
即k的取值范围是k>1.
考点: 反比例函数与一次函数的交点问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,与y轴交于点B,已知,点C(-2,m)在直线AB上,反比例函数的图象经过点C.
(1)求一次函数及反比例函数的解析式;
(2)结合图象直接写出:当时,不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知一次函数与反比例函数的图象交于点A(-4,-2)和B(a,4).

(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知点A(0,12),B(16,0),动点P从点A开始在线段AO上以每秒1个单位的速度向点O移动,同时点Q从点B开始在BA上以每秒2个单位的速度向点A移动,设点P、Q移动的时间为t秒。

⑴求直线AB的解析式;
⑵求t为何值时,△APQ与△AOB相似?
⑶当t为何值时,△APQ的面积为个平方单位?
⑷当t为何值时,△APQ的面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为 cm,椅子的高度为 cm,则应是的一次函数,下表列出两套符合条件的课桌椅的高度:

 
第一套
第二套
椅子高度(cm)
40
37
课桌高度(cm)
75
70
(1)请确定的函数关系式.
(2)现有一把高39 cm的椅子和一张高78.2 cm的课桌,它们是否配套?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2-6x+8=0的两个根(OA<OB),点C在y轴上,且OA︰AC=2︰5,直线CD垂直于直线AB于点P,交x轴于点D.

(1)求出点A、点B的坐标.
(2)请求出直线CD的解析式.
(3)若点M为坐标平面内任意一点,在坐标平面内是否存在这样的点M,使以点B、P、D、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式图

(1)第20天的总用水量为多少米3
(2)当x≥20时,求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与轴交于点B,且OA=OB,求这两个函数的关系式及两直线与轴围成的三角形的面积.

查看答案和解析>>

同步练习册答案