精英家教网 > 初中数学 > 题目详情
已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.

(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;
(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;
(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.
(1)取中点,联结
的中点,

,得
(2)由已知得
以线段AB为直径的圆与以线段DE为直径的圆外切,
,            
. 
解得,即线段的长为
(3)由已知,以为顶点的三角形与相似,
又易证得
由此可知,另一对对应角相等有两种情况:
;②
①当时,

,易得.得; 
②当时,

.又

,即,              

解得(舍去).即线段BE的长为2.   
综上所述,所求线段BE的长为8或2.
(1)△ABM中,已知了AB的长,要求面积就必须求出M到AB的距离,如果连接AB的中点和M,那么这条线就是直角梯形的中位线也是三角形ABM的高,那么AB边上的高就是(AD+BE)的一半,然后根据三角形的面积公式即可得出y,x的函数关系式;
(2)根据以AB,DE为直径的圆外切,那么可得出的是AD+BC=AB+DE,那么可根据BE,AD的差和AB的长,用勾股定理来表示出DE,然后根据上面分析的等量关系得出关于x的方程,即可求出x的值,即BE的长;
(3)如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因为AD∥BC,如果两角相等,那么M与D重合,显然不合题意.因此本题分两种情况进行讨论:
①当∠ADN=∠BME时,∠DBE=∠BME,因此三角形BDE和MBE相似,可得出关于DE,BE,EM的比例关系式,即可求出x的值.
②当∠AND=∠BEM时,∠ADB=∠BEM,可根据这两个角的正切值求出x的值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.

(1)求证:AB=AC;(2)当=时,①求tan∠ABE的值;②如果AE=,求AC的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图甲,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动至M,C),以AB为直径作⊙O,过点P的切线交AD于点F,切点为E。

(1)求四边形CDFP的周长;(3分)
(2)请连结OF,OP,求证:OF⊥OP;(4分)
(3)延长DC,FP相交于点G,连结OE并延长交直线DC于H(如图乙).是否存在点P
使△EFO∽△EHG(其对应关系是                              )?如果存在,试求此时的BP的长;如果不存在,请说明理由。(5分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯上D距离1.4米,BD长0.55米,则梯子的长为(    )
A.3.85米B.4.00米C.4.40米D.4.50米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市经济开发区建有三个食品加工厂,这三个工厂和开发区处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且米,米.自来水公司已经修好一条自来水主管道两厂之间的公路与自来水管道交于处,米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元.

(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计?并在图形中画出;
(2)求出各厂所修建的自来水管道的最低的造价各是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,是的正方形网格,⊿ABC是格点三角形(顶点在小正方形顶点上).
(1)求△ABC的面积;
(2)请画出与⊿ABC相似但不全等的另一个格点三角形,并写出与原三角形的相似比与面积比.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知△EFH和△MNK是位似图形,那么其位似中心是 (   )
A.点AB.点 BC.点CD.点D

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中:①两个图形位似也一定相似;②相似三角形对应中线的比等于对应周长的比;③一组数据的极差、方差或标准差越小,该组数据就越稳定; ④三角形的外角一定大于它的内角. 其中不正确的个数有(     ).
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_____________ 米.

查看答案和解析>>

同步练习册答案