精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx+c(a<0)的部分图象如图所示,抛物线与x轴的一个交点坐标为(3,0),对称轴为直线x=1.
(1)若a=-1,求c-b的值;
(2)若实数m≠1,比较a+b与m(am+b)的大小,并说明理由.

解:(1)由抛物线对称性可知,其与x轴的另一个交点为(-1,0),
∴a-b+c=0.
当a=-1时,解得 c-b=1.

(2)当m≠1时,a+b>m(am+b),
理由如下:
当x=1时,y=a+b+c,
当x=m时,y=am2+bm+c,
∵a<0,
∴当x=1时,函数取最大值y=a+b+c,
∴当m≠1时,a+b+c>am2+bm+c,
∴a+b>am2+bm,
即a+b>m(am+b).
分析:(1)因为抛物线上网对称轴为x=1,由抛物线对称性可知,其与x轴的另一个交点为(-1,0),把x=-1代入函数的解析式即可得到c-b的值;
(2)当m≠1时,a+b>m(am+b),把x=1和x=m分别代入函数的解析式得到关于a,b,c的关系式,因为顶点的横坐标为1,所以当x=1时函数取最大值y=a+b+c,
即a+b+c>am2+bm+c,进而证明a+b>m(am+b).
点评:本题考查了二次函数的图象和x轴交点的问题,求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案