精英家教网 > 初中数学 > 题目详情

【题目】如图,已知E、F分别是ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AD∥BC,且AD=BC,

∴AF∥EC,

∵BE=DF,

∴AF=EC,

∴四边形AECF是平行四边形


(2)解:∵四边形AECF是菱形,

∴AE=EC,

∴∠1=∠2,

∵∠3=90°﹣∠2,∠4=90°﹣∠1,

∴∠3=∠4,

∴AE=BE,

∴BE=AE=CE= BC=5


【解析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.24, ≈2.45)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组: ,并把它的解在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,C是AB延长线上一点,BC=OB,CE是⊙O的切线,切点为D,过点A作AE⊥CE,垂足为E,则CD:DE的值是(
A.
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C,D都在⊙O上, 的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设函数y=kx2+(2k+1)x+1(k为实数)
(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图象;
(2)根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;
(3)对任意负实数k,当x<m时,y随着x的增大而增大,试求出m的一个值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+ 与y轴相交于点A,点B与点O关于点A对称

(1)填空:点B的坐标是
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;
(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某工件的三视图,则此工件的表面积为(  )
A.15πcm2
B.51πcm2
C.66πcm2
D.24πcm2

查看答案和解析>>

同步练习册答案