精英家教网 > 初中数学 > 题目详情
24、已知梯形ABCD中,AD∥BC,AB=CD,∠B=45°,它的高为2cm,中位线长为5cm,则上底AD等于
3
cm.
分析:过A作AE⊥BC于E,过D作DF⊥BC于F,则AE=DF=2cm,AD=EF,根据已知可求得BE的长,从而根据梯形中位线定理即可求得AD的长.
解答:如图:梯形ABCD中,AD∥BC,AB=CD,∠B=45°
解:过A作AE⊥BC于E,过D作DF⊥BC于F,则AE=DF=2cm,AD=EF
在Rt△ABE中,
∵∠B=45°
∴AE=BE=2cm
同理DF=FC=2cm
∴BC+AD=2AD+2BE=2×5=10cm
∴AD=3cm.
点评:此题考查的是梯形中位线的性质定理,解答此题的关键是作出辅助线根据等腰直角三角形的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC,BD相交于O点,∠BCD=60°,则下列说法错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2
3
,AE为梯形的高,且BE=1,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.
(1)求证:AE⊥BD;    (2)若AD=4,BC=14,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠B=40°,∠C=70°,AD=3,BC=7,则腰AB=
4
4

查看答案和解析>>

同步练习册答案