精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知梯形ABCD中,AD∥CB,E,F分别是BD,AC的中点,BD平分∠ABC.
(1)求证:AE⊥BD;    (2)若AD=4,BC=14,求EF的长.
分析:(1)先由已知AD∥CB,得∠ADB=∠CBD,再由,BD平分∠ABC得∠ABD=∠CBD,由此推出∠ADB=∠ADB,即△ABD为等腰三角形,已知E,F分别是BD,AC的中点,所以推出AE⊥BD.
(2)延长AE交BC于G,能推出△ABE≌△GBE,所以得AE=GE,BG=AB,由(1)得AB=AD,则BG=AD,?CG=BC-BG=BC-AD,再由证明和已知得EF=
1
2
CG,从而求出EF的长.
解答:(1)证明:∵AD∥CB,
∴∠ADB=∠CBD,
又BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AB=AD,∴△ABD是等腰三角形,
已知E是BD的中点,
∴AE⊥BD.

(2)解:延长AE交BC于G,精英家教网
∵BD平分∠ABC,
∴∠ABE=∠GBE,
又∵AE⊥BD(已证),
∴∠AEB=∠GEB,
BE=BE,
∴△ABE≌△GBE,
∴AE=GE,BG=AB=AD,
又∵F是AC的中点(已知),
所以由三角形中位线定理得:
EF=
1
2
CG=
1
2
(BC-BG)=
1
2
(BC-AD)
=
1
2
×(14-4)=5.
答:EF的长为5.
点评:此题考查的知识点是三角形中位线定理的应用和等腰三角形的判定和性质,其关键是(1)证△ABD是等腰三角形.(2)延长AE交BC于G,推出E是AG的中点和BG=AD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知梯形ABCD中,AD∥BC,BE平分∠ABC,BE⊥CD,∠A=110°,AD=3,AB=5,则BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且0.3≤
S1S2
≤0.4
时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B=90°,AB=28cm,BC=28cm,点P从点A开始沿AB边向点B以3cm/s的速度移动,点Q从点B开始沿BC边向点C以1cm/s的速度移动,P,Q分别从A,B同时出发,当其中一精英家教网点到达终点时,另一点也随之停止.过Q作QD∥AB交AC于点D,连接PD,设运动时间为t秒时,四边形BQDP的面积为s.
(1)用t的代数式表示QD的长.
(2)求s关于t的函数解析式,并求出运动几秒梯形BQDP的面积最大?最大面积是多少?
(3)连接QP,在运动过程中,能否使△DPQ为等腰三角形?若存在,求出t的值,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•遂宁)如图,已知等腰△ABC的面积为4cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为
3
3
 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解

(1)如图①,△ABC中,D是BC中点,连接AD,直接回答S△ABD与S△ADC相等吗?
相等
相等
(S表示面积);
应用拓展
(2)如图②,已知梯形ABCD中,AD∥BC,E是AB的中点,连接DE、EC,试利用上题得到的结论说明S△DEC=S△ADE+S△EBC
解决问题
(3)现有一块如图③所示的梯形试验田,想种两种农作物做对比实验,用一条过D点的直线,将这块试验田分割成面积相等的两块,画出这条直线,并简单说明另一点的位置.

查看答案和解析>>

同步练习册答案