精英家教网 > 初中数学 > 题目详情
如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为
(-
1
2
,-
1
2
(-
1
2
,-
1
2
分析:先过点A作AB′⊥OB,垂足为点B′,由于点B在直线y=x上运动,所以△AOB′是等腰直角三角形,由勾股定理求出OB′的长即可得出点B′的坐标.
解答:解:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,
∵点B在直线y=x上运动,
∴△AOB′是等腰直角三角形,
过B′作B′C⊥x轴,垂足为C,
∴△B′CO为等腰直角三角形,
∵点A的坐标为(-1,0),
∴OC=CB′=
1
2
OA=
1
2
×1=
1
2

∴B′坐标为(-
1
2
,-
1
2
),
即当线段AB最短时,点B的坐标为(-
1
2
,-
1
2
).
故答案为:(-
1
2
,-
1
2
).
点评:本题考查了一次函数的性质、垂线段最短和等腰直角三角形的性质,找到表示B′点坐标的等腰直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•桂平市三模)如图,点P的坐标为(2,
3
2
),过点P作x轴的平行线交y轴于点A,交反比例函数y=
k
x
(x>0)的图象于点N;作PM⊥AN交反比例函数y=
k
x
(x>0)的图象于点M,PN=4.
(1)求反比例函数和直线AM的解析式;
(2)求△APM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在直角坐标系中,点C的坐标为(0,-2),点A与点B在x轴上,且点A与点B的横坐标是方程x2-3x-4=0的两个根,点A在点B的左侧.
(1)求经过A、B、C三点的抛物线的关系式.
(2)如图,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n<0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标.
②连接CD、CP,△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A的坐标为(-1,2),点B的坐标为(2,1),有一点C在x轴上移动,则点C到A、B两点的距离之和的最小值为(  )
A、3
2
B、4
C、3
D、4
2

查看答案和解析>>

同步练习册答案