精英家教网 > 初中数学 > 题目详情
15.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为(  )
A.6B.6$\sqrt{3}$C.9D.3$\sqrt{3}$

分析 根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.

解答 解:∵DE是AB的垂直平分线,
∴AD=BD,
∴∠DAE=∠B=30°,
∴∠ADC=60°,
∴∠CAD=30°,
∴AD为∠BAC的角平分线,
∵∠C=90°,DE⊥AB,
∴DE=CD=3,
∵∠B=30°,
∴BD=2DE=6,
∴BC=9,
故选C.

点评 本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且$\widehat{DE}$=$\widehat{BE}$.
(1)试判断△ABC的形状,并说明理由.
(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于2$\sqrt{5}$,线段CE1的长等于2$\sqrt{5}$;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1
(3)求点P到AB所在直线的距离的最大值.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于2$\sqrt{5}$,线段CE1的长等于2$\sqrt{5}$;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1
(3)①设BC的中点为M,则线段PM的长为2$\sqrt{2}$;②点P到AB所在直线的距离的最大值为1+$\sqrt{3}$.(直接填写结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=(  )
A.118°B.119°C.120°D.121°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列运算正确的是(  )
A.(-3mn)2=-6m2n2B.4x4+2x4+x4=6x4C.(xy)2÷(-xy)=-xyD.(a-b)(-a-b)=a2-b2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列运算正确的是(  )
A.(2a23=6a6B.-a2b2•3ab3=-3a2b5
C.$\frac{{a}^{2}-1}{a}$•$\frac{1}{a+1}$=-1D.$\frac{b}{a-b}$+$\frac{a}{b-a}$=-1

查看答案和解析>>

同步练习册答案