【题目】设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2﹣2x﹣3,当x=4时,f(4)=42﹣2×4﹣3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2﹣2x﹣3的图象如图1所示.
观察可知:f(﹣2)>0,f(1)<0,则f(﹣2).f(1)<0.所以函数f(x)=x2﹣2x﹣3在﹣2≤x≤1范围内有零点.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零点,﹣1也是方程x2﹣2x﹣3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是 .
(2)已知函数y2=f(x)=﹣ 的零点为x1 , x2 , 且x1<1<x2 .
①求零点为x1 , x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1 , x2 , 点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.
【答案】
(1)<;1
(2)
解:①∵x1、x2是零点
∴当y=0时,即﹣ =0.
方程可化简为 x2+2(a﹣1)x+(a2﹣2a)=0.
解方程,得x=﹣a或x=﹣a+2.
∵x1<1<x2,﹣a<﹣a+2,
∴x1=﹣a,x2=﹣a+2.
②∵x1<1<x2,
∴﹣a<1<﹣a+2.
∴﹣1<a<1.
∵a是整数,
∴a=0,所求抛物线的表达式为y=﹣ x2+2 .
此时顶点C的坐标为C(1, )如图2,
,
作CD⊥AB于D,连接CQ,
则AD=1,CD= ,tan∠BAC= ,
∴∠BAC=60°
由拋物线的对称性可知△ABC是等边三角形;
由△APM和△BPN是等边三角形,线段MN的中点为Q可得,
点M、N分别在AC和BC边上,四边形PMCN的平行四边形,
C、Q、P三点共线,且PQ= PC;
∵点P线段AB上运动的过程中,P与A、B两点不重合,
DC≤PC<AC,DC= ,AC=2,
即 ≤PQ< ,
∴ ≤PQ<1;
线段PQ的长的取值范围为: ≤PQ<1
【解析】解:(1)①由图象1,得f(a)f(b)<0,
②在a≤x≤b范围内y1=f(x)的零点的个数是 1.
所以答案是:<,1;
科目:初中数学 来源: 题型:
【题目】下列条件,不能判定△ABC与△DEF相似的是( )
A.∠C=∠F=90°,∠A=55°,∠D=35°
B.∠C=∠F=90°,AB=10,BC=6,DE=15,EF=9
C.∠C=∠F=90°, =
D.∠B=∠E=90°, =
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究函数y=x+ 的图象与性质
(1)函数y=x+ 的自变量x的取值范围是;
(2)下列四个函数图象中,函数y=x+ 的图象大致是
(3)对于函数y=x+ ,求当x>0时,y的取值范围.
请将下面求解此问题的过程补充完整:
解:∵x>0
∴y=x+
=( )2+( )2
=( ﹣ )2+
∵( ﹣ )2≥0,
∴y .
(4)若函数y= ,则y的取值范围是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,AB=AC,∠A=30°,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连结BD,DE. 则∠BDE的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点H在⊙O上,E是 的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.
(1)求证:CE是⊙O的切线;
(2)若FB=2,tan∠CAE= ,求OF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数 与反比例函数 的图象在第一象限的交点为A(1,n).
(1)求m与n的值;
(2)设一次函数的图象与x轴交于点B,连结OA,求∠BAO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AC和直线l分别垂直线段AB于点A,B.点P是线段AB上的一个动点,由A移动到B,连接CP,过点P作PD⊥CP交l于点D,设线段AP的长为x,BD的长为y,在下列图象中,能大致表示y与x之间函数关系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,以AB为直径的⊙O分别交AC,BC于点D,E,过点A作⊙O的切线交BC的延长线于点F,连接AE.
(1)求证:∠ABC=2∠CAF;
(2)过点C作CM⊥AF于M点,若CM=4,BE=6,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题呈现:
(Ⅰ)如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD . (S表示面积)
(Ⅱ)实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1 , 得到矩形A1B1C1D1 .
如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+S .
如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与S 之间的数量关系,并说明理由.
(Ⅲ)迁移应用:
请直接应用“实验探究”中发现的结论解答下列问题:
⑴如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF= ,求EG的长.
⑵如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG= ,连接EF、HG,请直接写出四边形EFGH面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com