精英家教网 > 初中数学 > 题目详情
(2013•丽水)如图,点P是反比例函数y=
k
x
(k<0)图象上的点,PA垂直x轴于点A(-1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=
5

(1)k的值是
-4
-4

(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是
0<a<2或
-11-
33
2
<a<
-11+
33
2
0<a<2或
-11-
33
2
<a<
-11+
33
2
分析:(1)设P(-1,t).根据题意知,A(-1,0),B(0,2),C(1,0),由此易求直线BC的解析式y=-2x+2.把点P的坐标代入直线BC的解析式可以求得点P的坐标,由反比例函数图象上点的坐标特征即可求得k的值;
(2)如图,延长线段BC交抛物线于点M,由图可知,当x<a时,∠MBA<∠ABC;作C关于直线AB的对称点C′,连接BC′并延长BC′交双曲线于点M′,当x<a时,∠MBA<∠ABC.
解答:解:(1)如图,PA垂直x轴于点A(-1,0),
∴OA=1,可设P(-1,t).
又∵AB=
5

∴OB=
AB2-OA2
=
5-1
=2,
∴B(0,2).
又∵点C的坐标为(1,0),
∴直线BC的解析式是:y=-2x+2.
∵点P在直线BC上,
∴t=2+2=4
∴点P的坐标是(-1,4),
∴k=-4.
故填:-4;

(2)①如图1,延长线段BC交双曲线于点M.
由(1)知,直线BC的解析式是y=-2x+2,反比例函数的解析式是y=-
4
x

y=-2x+2
y=-
4
x

解得,
x=2
y=-2
x=-1
y=4
(不合题意,舍去).
根据图示知,当0<a<2时,∠MBA<∠ABC;
②如图,作C关于直线AB的对称点C′,连接BC′并延长交双曲线于点M′.
∵A(-1,0),B(0,2),
∴直线AB的解析式为:y=2x+2.
设CC′解析式为:y=-
1
2
x+b,
∵C(1,0),
∴b=
1
2

∴CC′解析式为:y=-
1
2
x+
1
2

∵AC=AC′=2,
∴设C′点横坐标为:x,则纵坐标为:-
1
2
x+
1
2

∴(-x-1)2+(-
1
2
x+
1
2
2=4
解得:x1=-
11
5
,x2=1(不合题意舍去),
∴C′(-
11
5
8
5
),则易求直线BC′的解析式为:y=
2
11
x+2,
y=
2
11
x+2
y=-
4
x

解得:x1=
-11+
33
2
,x2=
-11-
33
2

则根据图示知,当
-11-
33
2
<a<
-11+
33
2
时,∠MBA<∠ABC.
综合①②知,当0<a<2或
-11-
33
2
<a<
-11+
33
2
时,∠MBA<∠ABC.
故答案是:0<a<2或
-11-
33
2
<a<
-11+
33
2
点评:本题综合考查了待定系数法求一次函数的解析式,反比例函数图象上点的坐标特征以及分式方程组的解法.解答(2)题时,一定要分类讨论,以防漏解.另外,解题的过程中,利用了“数形结合”的数学思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•丽水)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是
15
15

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.
(1)求y与x之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丽水)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.
(1)当t=2时,求CF的长;
(2)①当t为何值时,点C落在线段BD上;
     ②设△BCE的面积为S,求S与t之间的函数关系式;
(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.

查看答案和解析>>

同步练习册答案