精英家教网 > 初中数学 > 题目详情
已知A、B两点,下列说法正确的是(  )
分析:根据直线、射线、线段的定义对各选项分析判断后利用排除法求解.
解答:解:A、线段AB与线段BA是相同线段,故本选项错误;
B、射线AB与射线BA不是同一条射线,故本选项错误;
C、在A、B两点间直线段AB最短,故本选项错误;
D、直线AB与直线BA是同一条直线,正确,故本选项正确.
故选D.
点评:本题考查直线、射线、线段,主要是对表示方法的考查,需熟记.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读下列材料:
如图1,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2外公切线,A、B为切点,
求证:AC⊥BC
证明:过点C作⊙O1和⊙O2的内公切线交AB于D,
∵DA、DC是⊙O1的切线
∴DA=DC.精英家教网
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根据上述材料,解答下列问题:
(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;
(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图2),已知A、B两点的坐标为(-4,0),(1,0),求经过A、B、C三点的抛物线y=ax2+bx+c的函数解析式;
(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD的边长AB=4,BC=8,点E在BC上由B向C运动,点F在CD上以每秒1个单位的速度由C向D运动,已知E、F两点同时运动,且点E的速度是点F的2倍.设运动时间为t,解答下列问题:
(1)设△AEF的面积为S,求S与t之间的函数关系式;
(2)当线段EF与BD平行时,试求△AEF的面积,并确定点E、F的位置;
(3)是否存在t值,使△AEF的面积为△ABE与△ECF的面积和的3倍?若存在,请求出t的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•三明)如图,在矩形ABCD中,O是对角线AC的中点,动点Q从点D出发,沿DC方向匀速运动到终点C,动点P从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接OP,OQ.设运动时间为t,四边形OPCQ的面积为S,那么下列图象能大致刻画S与t之间的关系的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,平面直角坐标系中,点A、B在x轴上,点C在第一象限,AC=BC,点D、E分别是AC、BC的中点.已知A、D两点的坐标分别为(-3,0)、(0,4),
(1)直接写出下列各点的坐标:
B
(9,0)
(9,0)
;C
(3,8)
(3,8)
;E
(6,4)
(6,4)

(2)如图②动点P从点A出发,沿A→D→E的方向向点E运动(不与E重合),同时动点M从点D出发,沿D→E→B的方向向点B运动(不与B重合),P、M运动的速度均为每秒1个单位,过点P的直线l与线段BC平行,交线段AB于点Q,设运动时间为t秒(t>0),
①直接写出t的取值:
5≤t<11
5≤t<11
时,四边形PQBE为平行四边形;
t=6
t=6
时,四边形PQBM为菱形;
②求△BQM的面积S与运动时间t的函数关系式,并写出相应的t的取值范围.

查看答案和解析>>

同步练习册答案