精英家教网 > 初中数学 > 题目详情
(2013•永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3
(1)求证:BN=DN;
(2)求△ABC的周长.
分析:(1)证明△ABN≌△ADN,即可得出结论;
(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.
解答:(1)证明:在△ABN和△ADN中,
∠1=∠2
AN=AN
∠ANB=∠AND

∴△ABN≌△ADN,
∴BN=DN.

(2)解:∵△ABN≌△ADN,
∴AD=AB=10,DN=NB,
又∵点M是BC中点,
∴MN是△BDC的中位线,
∴CD=2MN=6,
故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.
点评:本题考查了三角形的中位线定理及等腰三角形的判定,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•永州)如图,下列条件中能判定直线l1∥l2的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永州)如图,两个反比例函数y=
4
x
和y=
2
x
在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永州)如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为
BC
的中点.
(1)求证:AB=BC;
(2)求证:四边形BOCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永州)如图,已知二次函数y=(x-m)2-4m2(m>0)的图象与x轴交于A、B两点.
(1)写出A、B两点的坐标(坐标用m表示);
(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;
(3)在(2)的基础上,设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.

查看答案和解析>>

同步练习册答案