【题目】如图,已知A、B、C分别是⊙O上的点,∠B=60°,P是直径CD的延长线上的一点,且AP=AC.
(1)求证:AP与⊙O相切;
(2)如果PD=,求AP的长.
【答案】(1)证明参见解析;(2)3.
【解析】
试题分析:(1)利用圆周角定理以及等腰三角形的性质,得出∠P=∠ACP=∠OCA=∠OAC=30°,∠PAC=120°,进而得出∠PAO=90°,即可得出答案;(2)首先根据直角三角形中30°角所对的直角边等于斜边的一半求得半径,从而求得OA、OP,进而利用勾股定理得出AP的长.
试题解析:(1)如图:连接AO,
∵∠B=60°,∴∠AOC=120°,∵AO=CO,AP=AC,∴∠P=∠ACP,∠OCA=∠OAC=30°,∴∠P=∠ACP=∠OCA=∠OAC=30°,∴∠PAC=120°,∴∠PAO=90°,∴AP是⊙O的切线;(2)设⊙O的半径为R,则OA=OD=R,PD=,∴OP=+R,∵∠PAO=90°,∠P=30°,∴OP=2OA,即+R=2R,解得R=,∴OA=,OP=2,根据勾股定理得:PA=,AP===3.故AP长为3.
科目:初中数学 来源: 题型:
【题目】若△ABC的三边长是a,b,c,且满足(a-b)(a-c)=0,则△ABC是
(A) 钝角三角形 (B) 直角三角形 (C) 等腰直角三角形 (D) 等边三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品进价为a元/件,在销售旺季,商品售价较进价高30%,销售旺季过后,商品又以7折的价格开展促销活动,这时一件该商品的售价为___________元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲,乙,丙三家超市为了促销一种定价均为100元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客到哪家超市买这种商品最划算( )
A. 甲 B. 乙 C. 丙 D. 乙或丙
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是_____.(填序号)
①一个有理数的绝对值一定是正数;
②正数和负数统称为有理数;
③若x+2是一个负数,则x一定是负数;
④若|a﹣2|+(b+3)2=0,则﹣ba的值是﹣9.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com