【题目】如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.
(参考数据:sin53°≈ , cos53°≈ , tan53°≈)
(1)求CD两点的距离;
(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD的正弦值.
【答案】
(1)
解:过点C、D分别作CH⊥AB,DF⊥CH,垂足分别为H,F,
∵在Rt△CGB中,∠CBG=90°﹣60°=30°,
∴CG=BC=×(30×)=7.5,
∵∠DAG=90°,
∴四边形ADFG是矩形,
∴GF=AD=1.5,
∴CF=CG﹣GF=7.5﹣1.5=6,
在Rt△CDF中,∠CFD=90°,
∵∠DCF=53°,
∴COS∠DCF=,
∴CD===10(海里).
答:CD两点的距离是10;
(2)
解:如图,
设渔政船调整方向后t小时能与捕渔船相会合,
由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,
过点E作EH⊥CD于点H,则∠EHD=∠CHE=90°,
∴sin∠EDH=,
∴EH=EDsin53°=3t×=t,
∴在Rt△EHC中,sin∠ECD===.
答:sin∠ECD=.
【解析】(1)过点C、D分别作CG⊥AB,DF⊥CG,垂足分别为G,F,根据直角三角形的性质得出CG,再根据三角函数的定义即可得出CD的长;
(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53°,过点E作EH⊥CD于点H,根据三角函数表示出EH,在Rt△EHC中,根据正弦的定义求值即可.
【考点精析】认真审题,首先需要了解关于方向角问题(指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角).
科目:初中数学 来源: 题型:
【题目】自开展“学生每天锻炼1小时”活动后,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:
(1)该校本次调查中,共调查了多少名学生?
(2)请将两个统计图补充完整;
(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线 交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.
(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB、AC于E、F,已知EF∥BC.
(1)求证:BC是⊙O的切线;
(2)若已知AE=12,CF=6,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=,则菱形ACEF的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区为了解居民对足球、篮球、排球、羽毛球和乒乓球这五种球类运动项目的喜爱情况,在社区开展了“我最喜爱的球类运动项目”的随机调查(每位被调查者必须且只能选择最喜爱的一种球类运动项目),并将调查结果进行了统计,绘制成了如图所示的两幅不完整的统计图:
(1)求本次被调查的人数;
(2)将上面的两幅统计图补充完整;
(3)若该社区喜爱这五种球类运动项目的人数大约有4000人,请你估计该社区喜爱羽毛球运动项目的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:
第一次 | 第二次 | 第三次 | 第四次 | |
甲 | 87 | 95 | 85 | 93 |
乙 | 80 | 80 | 90 | 90 |
据上表计算,甲、乙两名同学四次数学测试成绩的方差分别为S甲2=17、S乙2=25,下列说法正确的是( )
A.甲同学四次数学测试成绩的平均数是89分
B.甲同学四次数学测试成绩的中位数是90分
C.乙同学四次数学测试成绩的众数是80分
D.乙同学四次数学测试成绩较稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,线段AB的两个端点是A(﹣5,1),B(﹣2,3),线段CD的两个端点是C(﹣5,﹣1),D(﹣2,﹣3).
(1)线段AB与线段CD关于直线对称,则对称轴是;
(2)平移线段AB得到线段A1B1 , 若点A的对应点A1的坐标为(1,2),画出平移后的线段A1B1 , 并写出点B1的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com