精英家教网 > 初中数学 > 题目详情
(2012•滨州)如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.
分析:(1)直接根据HL定理得出Rt△AFD≌Rt△CEB;
(2)由ASA定理得出△ABH≌△BCE≌△CDG≌△DAF,再根据S正方形ABCD=4S△ABH+SH正方形EGF即可得出结论;
(3)由△AFD≌△CEB可得出h1=h3,再根据(2)中△ABH≌△BCE≌△CDG≌△DAF,可知S正方形ABCD=4S△ABH+S正方形HEGF,进而得出结论.
解答:(1)证明:在Rt△AFD和Rt△CEB中,
∵AD=BC,AF=CE,
∴Rt△AFD≌Rt△CEB;

(2)解:∵∠ABH+∠CBE=90°,∠ABH+∠BAH=90°,
∴∠CBE=∠BAH
又∵AB=BC,∠AHB=∠CEB=90°
∴△ABH≌△BCE,
同理可得,△ABH≌△BCE≌△CDG≌△DAF,
∴AH=DF=BE,
∵l1,l2,l3,l4是一组平行线,
∴AH=HF,BE=EH,
∴EH=HF,
∵l2∥l3,AF⊥l3于点F,CE⊥l2于点E,
∴四边形HEGF是正方形,
∴S正方形ABCD=4S△ABH+S正方形HEGF
=4×
1
2
×2×1+1×1
=5;

(3)解:由(1)知,△AFD≌△CEB,故h1=h3
由(2)知,△ABH≌△BCE≌△CDG≌△DAF,
∴S正方形ABCD=4S△ABH+S正方形HEGF
=4×
1
2
(h1+h2)•h1+h22
=2h12+2h1h2+h22
点评:本题考查的是全等三角形的判定与性质,正方形的性质及平行线之间的距离,熟知判定全等三角形的SSS、SAS、ASA及HL定理是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•滨州)如表是晨光中学男子篮球队队员的年龄统计:
 年龄 13  14   15  16
 人数  1  5  5  1
他们的平均年龄是
14.5
14.5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•滨州)如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠P=50°,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•滨州)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:填空题

(2012•滨州)如图,锐角三角形ABC的边AB,AC上的高线CE和BF相交于点D,请写出图中的两对相似三角形:    (用相似符号连接).

查看答案和解析>>

同步练习册答案