精英家教网 > 初中数学 > 题目详情
(2012•滨州)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
分析:(1)已知抛物线上不同的三点坐标,利用待定系数法可求出该抛物线的解析.
(2)根据O、B点的坐标发现:抛物线上,O、B两点正好关于抛物线的对称轴对称,那么只需连接A、B,直线AB和抛物线对称轴的交点即为符合要求的M点,而AM+OM的最小值正好是AB的长.
解答:解:(1)把A(-2,-4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,得
4a-2b+c=-4
4a+2b+c=0
c=0

解这个方程组,得a=-
1
2
,b=1,c=0
所以解析式为y=-
1
2
x2+x.

(2)由y=-
1
2
x2+x=-
1
2
(x-1)2+
1
2
,可得
抛物线的对称轴为直线x=1,并且对称轴垂直平分线段OB
∴OM=BM
∴OM+AM=BM+AM
连接AB交直线x=1于M点,则此时OM+AM最小
过点A作AN⊥x轴于点N,
在Rt△ABN中,AB=
AN2+BN2
=
42+42
=4
2

因此OM+AM最小值为4
2
点评:此题在二次函数的综合类型题中难度适中,难点在于点M位置的确定,正确理解二次函数的轴对称性以及两点之间线段最短是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•滨州)如表是晨光中学男子篮球队队员的年龄统计:
 年龄 13  14   15  16
 人数  1  5  5  1
他们的平均年龄是
14.5
14.5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•滨州)如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠P=50°,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•滨州)如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:填空题

(2012•滨州)如图,锐角三角形ABC的边AB,AC上的高线CE和BF相交于点D,请写出图中的两对相似三角形:    (用相似符号连接).

查看答案和解析>>

同步练习册答案