精英家教网 > 初中数学 > 题目详情

如图,都是等边三角形,求证

答案:略
解析:

均为等边三角形

,即

(SAS)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点O是等边三角形ABC的中心,A1,B1,C1分别是OA,OB,OC的中点,则△A1BlCl与△ABC的位似比,位似中心分别是
1:2,点O
1:2,点O

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:047

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.

(1)选择:如图,点O是等边三角形PQR的中心,分别是OP、OQ、OR的中点,则△与△PQR是位似三角形.此时,△与△PQR的位似比、位似中心分别为

[  ]

A.2、点P
B.、点P
C.2、点O
D.、点O

(2)如图,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.

画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;

②连结OE并延长,交AB于点,过点∥EC,交OA于点,作∥ED,交OB于点

③连结.则△是△AOB的内接三角形.

求证:△是等边三角形.

查看答案和解析>>

科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:047

位似三角形

如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位

似中心.利用三角形的位似可以将一个三形缩小或放大.

(1)

如图,点O是等边三角形PQR的中心,分别是OP、OQ、OR的中点,则△与△PQR是位似三角形.此时,△与△PQR的位似比、位似中心分别为

[  ]

A.

2;点P

B.

;点P

C.

2;点O

D.

;点O

(2)

如图,用下面的方法可以画AOB的内接等边三角形.阅读后证明相应问题.画法:

①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;

②连结OE并延长,交AB于点,过点∥EC,交OA于点,作∥ED,交OB于点

③连结.则△是AOB的内接三角形.

求证:△是等边三角形.

查看答案和解析>>

科目:初中数学 来源:2012年沪科版初中数学八年级上15.1全等三角形练习卷(解析版) 题型:选择题

如图,都是等边三角形,在这个图形中,有两个三角形一定是全等的,利用符号“”可以表示为(     )

A.       B.  

C.       D.

 

查看答案和解析>>

同步练习册答案