精英家教网 > 初中数学 > 题目详情
如图,a、b、c分别是△ABC中∠A、∠B、∠C的对边,且a、b是关于x的一元二次方程x2+4(c+2)=(c+4)x的两个根.点D在AB上,以BD为直径的⊙O切AC于点E.
(1)判断△ABC的形状;
(2)若tanA=,求AE的长.

【答案】分析:(1)由a、b是关于x的一元二次方程x2+4(c+2)=(c+4)x的两个根,根据根与系数的关系,可得a+b=c+4,ab=4(c+2),继而可得a2+b2=c2,则可判定△ABC是直角三角形.
(2)连接OE,由tanA=与a+b=c+4,可求得a,b,c的值,又由平行线分线段成比例定理,可求得半径的长,继而求得答案.
解答:解:(1)△ABC是直角三角形.
理由:∵a、b是关于x的一元二次方程x2+4(c+2)=(c+4)x的两个根.
∴a+b=c+4,ab=4(c+2),(1分)
∴a2+b2=(a+b)2-2ab
=(c+4)2-8(c+2)
=c2
∴△ABC是直角三角形.(2分)

(2)∵∠C=90°,
∴tanA==
设a=3k,则b=4k,从而c=5k(k>0).
∵a+b=c+4,
∴3k+4k=5k+4,
解得:k=2.
∴a=6,b=8,c=10.(5分)
连接OE.(6分)
∵AE是切线,
∴OE⊥AE.
又∵BC⊥AC,
∴OE∥BC.(7分)
∴△AOE∽△ABC,


解得:OE=
在Rt△AOE中,AE===5.
点评:此题考查了切线的性质、相似三角形的判定与性质、勾股定理的逆定理、根与系数的关系以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).
(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)
(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网某花木场有一块形如等腰梯形ABCD的空地(如图),各边中点分别为E、F、G、H,测得对角线AC=5m,若用篱笆围成四边形EFGH的场地,则需篱笆总长度为
 
m.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图中所有的线段可分别表示为
线段AB,BC,AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,经过原点O的⊙C分别与x轴、y轴交于点A、B,P为
OBA
上一点.若∠OPA=60°,OA=4
3
,则OB的长为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A,
E之间,连接CE、CF、EF,有下列四个结论:
①△CDF≌△EBC;     ②∠CDF=∠EAF;
③△ECF是等边三角形;  ④CG⊥AE,
请把你认为正确的结论的序号填在横线上
①②③
①②③

查看答案和解析>>

同步练习册答案