精英家教网 > 初中数学 > 题目详情

一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是________.

2656
分析:如果一个数是智慧数,就能表示为两个非零自然数的平方差,设这两个数分别m、n,设m>n,即智慧数=m2-n2=(m+n)(m-n),因为mn是非0的自然数,因而m+n和m-n就是两个自然数.要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个非0自然数的和与差.
解答:设这两个数分别m、n,
设m>n,
即智慧数=m2-n2=(m+n)(m-n),
又∵mn是非0的自然数,
∴m+n和m-n就是两个自然数,
要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个非0自然数的和与差.
(k+1)2-k2=2k+1,(k+1)2-(k-1)2=4k,每个大于1的奇数与每个大于4且是4的倍数的数都是智慧数,而被4除余数为2的偶数都不是智慧数,最小智慧数为3,从5开始,智慧数是5,7,8,9,11,12,13,15,16,17,19,20…即2个奇数,1个4的倍数,3个一组依次排列下去.
显然1不是“智慧数”,而大于1的奇数2k+1=(k+1)2-k2,都是“智慧数”. 因为:4k=(k+1)2-(k-1)2,所以大于4且能被4整除的数都是“智慧数”而4不是“智慧数”,由于x2-y2=(x+y)×(x-y)(其中x、y∈N),当x,y奇偶性相同时,(x+y)×(x-y)被4整除.当x,y奇偶性相异时,(x+y)*(x-y)为奇数,所以形如4k+2的数不是“智慧数”在自然数列中前四个自然数中只有3是“智慧数”.此后每连续四个数中有三个“智慧数”.
由于1989=3×663,
所以4×664=2656是第1990个“智慧数”.
故答案为:2656.
点评:本题主要考查了平方差公式,难度适中,主要是题中新定义的理解与把握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是
2656

查看答案和解析>>

科目:初中数学 来源: 题型:

17、一个非零的自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如28=82-62,故28是一个“智慧数”.下列各数中,不是“智慧数”的是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是______.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省温州市瑞安市中考模拟试卷(解析版) 题型:选择题

一个非零的自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如28=82-62,故28是一个“智慧数”.下列各数中,不是“智慧数”的是( )
A.987
B.988
C.30
D.32

查看答案和解析>>

同步练习册答案