如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).
(1)求图中反比例函数的关系式(不需写出自变量的取值范围);
(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);
(3)设t=m﹣n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).
(1) (2)(50,200)或(200,50) (3)T(100,100)
【解析】
试题分析:首先根据题意,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递,且方阵始终保持矩形形状且面积恒为10000平方米,将此数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.
解:(1)设反比例函数为(k>0),
则k=xy=mn=S矩形OATB=10000,
∴.
(2)设鲜花方阵的长为m米,则宽为(250﹣m)米,由题意得
m(250﹣m)=10000,
250m﹣m2=10000,
即m2﹣250m+10000=0,
解得m=50或m=200,满足题意.
∴此时火炬的坐标为(50,200)或(200,50).
(3)∵mn=10000,在Rt△TAO中,
=.
∴当t=0时,TO最小,
∵t=m﹣n,
∴此时m=n,又mn=10000,m>0,n>0,
∴m=n=100,且10<100<1000,
∴T(100,100).
考点:反比例函数的应用.
点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2010-2011学年浙江省绍兴市新昌中学九年级(上)期中数学模拟试卷3(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com