精英家教网 > 初中数学 > 题目详情
14.下列图形中,既是轴对称图形又是中心对称图形的是(  )
A.
等边三角形
B.
正方形
C.
平行四边形
D.
正五边形

分析 根据轴对称图形与中心对称图形的概念求解.

解答 解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形又是中心对称图形,故此选项正确;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、是轴对称图形,不是中心对称图形,故此选项错误;
故选:B.

点评 此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.一个不透明的布袋里装有9个只有颜色不同的球,其中3个红球,2个白球,4个蓝球,从布袋中随机摸出一个球,摸出的球概率最大的是蓝球.(填红球、白球、蓝球)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.用科学记数法表示24000000为2.4×107

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列一元二次方程没有实数根的是(  )
A.x2-2x-1=0B.x2+x+3=0C.x2-1=0D.x2+2x+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,小颖在教学楼四层楼上,每层楼高均为3米,测得目高1.5米,看到校园里的圆形花园最近点的俯角为60°,最远点的俯角为30°,请你帮小颖算出圆形花园的面积是多少平方米?(结果保留1位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如果a+b=3,则代数式$\frac{{a}^{2}-{b}^{2}}{a}$÷$\frac{a-b}{2a}$的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.3D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+$\frac{1}{2}PC$的最小值和PC-$\frac{1}{2}PC$的最大值;
(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+$\frac{2}{3}PC$的最小值为$\sqrt{106}$,PD-$\frac{2}{3}PC$的最大值为$\sqrt{106}$.
(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+$\frac{1}{2}PC$的最小值为$\sqrt{37}$,PD-$\frac{1}{2}PC$的最大值为$\sqrt{37}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,正方形ABCD中,点P,Q分别为AD,CD边上的点,且DQ=CP,连接BQ,AP.求证:BQ=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,AD平分∠BAC.
(1)作线段AD的垂直平分线EF交AB边于点E,交AC边于点F;
(保留作图痕迹,不写作法)
(2)若BD=3,CD=2,AF=4,求BE的长.

查看答案和解析>>

同步练习册答案