精英家教网 > 初中数学 > 题目详情

【题目】解答
(1)观察与归纳:在如图1所示的平面直角坐标系中,直线l与y轴平行,点A与点B是直线l上的两点(点A在点B的上方).

①小明发现:若点A坐标为(2,3),点B坐标为(2,﹣4),则AB的长度为
②小明经过多次取l上的两点后,他归纳出这样的结论:若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为
(2)如图2,正比例函数y=x与一次函数y=﹣x+6交于点A,点B是y=﹣x+6图象与x轴的交点,点C在第四象限,且OC=5.点P是线段OB上的一个动点(点P不与点O,B重合),过点P与y轴平行的直线l交线段AB于点Q,交射线OC于R,设点P横坐标为t,线段QR的长度为m.已知当t=4时,直线l恰好经过点C.
①求点A的坐标;
②求OC所在直线的关系式;
③求m关于t的函数关系式.

【答案】
(1)7;m﹣n
(2)

解:①解

∴A(3,3);

②∵直线l平行于y轴且当t=4时,直线l恰好过点C,如图2,作CE⊥OB于E,

∴OE=4,

在Rt△OCE中,OC=5,

由勾股定理得:

CE= =3,

∴点C的坐标为:(4,﹣3);

设OC所在直线的关系式为y=kx,则﹣3=4k,

∴k=﹣

∴OC所在直线的关系式为y=﹣ x;

③由直线y=﹣x+6可知B(6,0),

作AD⊥OB于D,

∵A(3,3),

∴OD=BD=AD=3,

∴∠AOB=45°,OA=AB,

∴∠OAB=90°,∠ABO=45°

当0<t≤3时,如图2,

∵直线l平行于y轴,

∴∠OPQ=90°,

∴∠OQP=45°,

∴OP=QP,

∵点P的横坐标为t,

∴OP=QP=t,

在Rt△OCE中,

∵tan∠EOC=|k|=

∴tan∠POR= =

∴PR=OPtan∠POR= t,

∴QR=QP+PR=t+ t= t,

∴m关于t的函数关系式为:m= t;

当3<t<6时,如图3,

∵∠BPQ=90°,∠ABO=45°,

∴∠BQP=∠PBQ=45°,

∴BP=QP,

∵点P的横坐标为t,

∴PB=QP=6﹣t,

∵PR∥CE,

∴△BPR∽△BEC,

=

=

解得:PR=9﹣ t,

∴QR=QP+PR=6﹣t+9﹣ t=15﹣ t,

∴m关于t的函数关系式为:m=15﹣ t;

综上,m关于t的函数关系式为m=


【解析】解:(1)①若点A坐标为(2,3),点B坐标为(2,﹣4),则AB的长度为3﹣(﹣4)=7;②若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为m﹣n;
所以答案是7;m﹣n;
【考点精析】通过灵活运用正比例函数的图象和性质和一次函数的图象和性质,掌握正比函数图直线,经过一定过原点.K正一三负二四,变化趋势记心间.K正左低右边高,同大同小向爬山.K负左高右边低,一大另小下山峦;一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解全国初中毕业生的睡眠状况,比较适合的调查方式是____.(填“普查”或“抽样调查”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区为了绿化环境,计划分两次购进AB两种花草,第一次分别购进AB两种花草30棵和15棵,共花费675元;第二次分别购进AB两种花草12棵和5棵.两次共花费940元(两次购进的AB两种花草价格均分别相同).

1AB两种花草每棵的价格分别是多少元?

2)若购买AB两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各数中比﹣12的数是(  )

A. ﹣1 B. ﹣2 C. 1 D. ﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:

(1)A型自行车去年每辆售价多少元?

(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:

已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.

(1)求表中a的值;

(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?

(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据有关部门统计,2019年春节期间,广东各大景点的游客总数约25200000人次,将数25200000用科学记数法表示为(  )

A.2.52×107B.2.52×108C.0.252×107D.0.252×108

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x1ty23t,那么用含x的代数式表示y______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,分别以点A和点B为圆心,大于 AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为

查看答案和解析>>

同步练习册答案