【题目】为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)
节目类型 | 新闻 | 体育 | 动画 | 娱乐 | 戏曲 |
人数 | 36 | 90 | a | b | 27 |
根据表、图提供的信息,解决以下问题:
(1)计算出表中a、b的值;
(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;
(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?
【答案】
(1)
解:∵喜欢体育的人数是90人,占总人数的20%,
∴总人数= =450(人).
∵娱乐人数占36%,
∴a=450×36%=162(人),
∴b=450﹣162﹣36﹣90﹣27=135(人).
(2)
解:∵喜欢动画的人数是135人,
∴ ×360°=108°
(3)
解:∵喜爱新闻类人数的百分比= ×100%=8%,
∴47500×8%=3800(人).
答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人
【解析】(1)先求出抽取的总人数,再求出b的值,进而可得出a的值;
(2)求出a的值与总人数的比可得出结论;
(3)求出喜爱新闻类人数的百分比,进而可得出结论.本题考查的是扇形统计图,熟知通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数是解答此题的关键.
科目:初中数学 来源: 题型:
【题目】规定:logab(a>0,a≠1,b>0)表示a,b之间的一种运算.
现有如下的运算法则:lognan=n.logNM= (a>0,a≠1,N>0,N≠1,M>0).
例如:log223=3,log25= ,则log1001000=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km到C村,最后回到邮局.
(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;
(2)C村离A村有多远?
(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设一次函数y=kx+2k-3(k≠0),对于任意两个k的值k1,k2,分别对应两个一次函数值y1,y2,若k1k2<0,当x=m时,取相应y1,y2,中的较小值p,则p的最大值是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列数表
根据数表反映的规律,猜想第6行与第6列的交叉点上的数应为多少.
(1)第n行与第n列的交叉点上的数应为多少.(用含正整数n的式子表示)
(2)计算左上角2×2的正方形里所有数字之和,即: 在数表中任取几个2×2的正方形,计算其中所有数字之和,归纳你得出的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k<0)与反比例函数y= 的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)
(1)求反比例函数的解析式;
(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某市电视台记者为了解市民获取新闻的主要图径,通过抽样调查绘制的一个条形统计图.若该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数大约为万人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)下面是小马虎解的一道题
题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.
解:根据题意可画出图,
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°,
∴∠AOC=55°.
若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com