分析 (1)连接OA,根据圆周角定理求出∠AOC=120°,得到∠OCA的度数,根据切线的性质求出∠M的度数,根据等腰三角形的性质得到答案;
(2)作AG⊥CM于G,根据直角三角形的性质求出AG的长,根据勾股定理求出CG,得到答案.
解答
(1)证明:连接OA,
∵AM是⊙O的切线,∴∠OAM=90°,
∵∠B=60°,∴∠AOC=120°,
∵OA=OC,∴∠OCA=∠OAC=30°,
∴∠AOM=60°,∴∠M=30°,
∴∠OCA=∠M,
∴AM=AC;
(2)
作AG⊥CM于G,
∵∠OCA=30°,AC=3,∴AG=$\frac{3}{2}$,
由勾股定理的,CG=$\frac{3\sqrt{3}}{2}$,
则MC=2CG=3$\sqrt{3}$.
点评 本题考查的是切线的性质、等腰三角形的性质和勾股定理的应用,掌握圆的切线垂直于过切点的半径是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3,-7,-1 | B. | -3,7,-1 | C. | 3,7,-1 | D. | -3,-7,1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com