精英家教网 > 初中数学 > 题目详情
如图1,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.
(1)求证:△BMD为等腰直角三角形.
(2)将△ADE绕点A逆时针旋转45°,如图2中的“△BMD为等腰直角三角形”是否仍然成立?请说明理由.
(3)将△ADE绕点A逆时针旋转135°,如图3中的“△BMD为等腰直角三角形”成立吗?(不用说明理由).
(4)我们是否可以猜想,将△ADE绕点A任意旋转一定的角度,如图4中的“△BMD为等腰直角三角形”均成立?(不用说明理由).
精英家教网
分析:(1)根据直角三角形斜边上的中线等于斜边的一半,求出BM=EN=MC,DM=EM=MC,然后根据等边对等角的性质可以证明∠BMD=90°,所以△BMD为等腰直角三角形;
(2)延长DM交BC于N,先根据∠EDB=∠ABC=90°证明ED∥BC,然后根据两直线平行,内错角相等求出∠DEM=∠MCN,从而证明△EDM与△MNC全等,根据全等三角形对应边相等可得DM=MN,然后即可证明BM⊥DM,且BM=DM.
(3)(1)中的结论成立.
(4)(1)中的结论成立.
解答:(1)证明:
∵点M是Rt△BEC的斜边EC的中点,
∴BM=
1
2
EC=MC,
∴∠MBC=∠MCB.
∴∠BME=2∠BCM.
同理可证:DM=
1
2
EC=MC,
∠EMD=2∠MCD.
∴∠BMD=2∠BCA=90°,
∴BM=DM.
∴△BMD是等腰直角三角形.

(2)(1)中的结论仍然成立.
延长DM与BC交于点N(如图)
精英家教网∵DE⊥AB
CB⊥AB,
∴∠EDB=∠CBD=90°
∴DE∥BC.
∴∠DEM=∠MCN.
又∵∠EMD=∠NMC,
EM=MC
∴△EDM≌△MNC.
∴DM=MN.
DE=NC=AD.
又AB=BC,
∴AB-AD=BC-CN
∴BD=BN.
∴BM⊥DM.
即∠BMD=90°.
∵∠ABC=90°,
∴BM=
1
2
DN=DM.
∴△BMD是等腰直角三角形.

(3)(1)中的结论成立.

(4)(1)中的结论成立.
点评:本题主要考查了全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握判定定理及性质并灵活运用是解题的关键,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.
①求证:△ABP≌△ACQ;
②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.
(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF′G′的位置,点M是边EF′与边FG的交点,点N在边EG′上且EN=EM,连接GN.求点E到直线GN的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•下关区一模)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.
①求证:△ABP≌△ACQ;
②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.
(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•资阳)在一次机器人测试中,要求机器人从A出发到达B处.如图1,已知点A在O的正西方600cm处,B在O的正北方300cm处,且机器人在射线AO及其右侧(AO下方)区域的速度为20cm/秒,在射线AO的左侧(AO上方)区域的速度为10cm/秒.
(1)分别求机器人沿A→O→B路线和沿A→B路线到达B处所用的时间(精确到秒);
(2)若∠OCB=45°,求机器人沿A→C→B路线到达B处所用的时间(精确到秒);
(3)如图2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.试说明:从A出发到达B处,机器人沿A→P→B路线行进所用时间最短.
(参考数据:
2
≈1.414,
3
≈1.732,
5
≈2.236,
6
≈2.449)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知点D在A上,△ABC和△ADE都是等腰直角三角形,点M为BC的中点
(1)求证:△BMD为等腰直角三角形.
(2)将△ADE绕点A逆时针旋转45°,如图2中的“△BMD为等腰直角三角形”是否仍然成立?请说明理由.
(3)将△ADE绕点A任意旋转一定的角度,如图3中的“△BMD为等腰直角三角形”是否均成立?说明理由.

查看答案和解析>>

同步练习册答案