精英家教网 > 初中数学 > 题目详情
探究与发现:
(1)探究一:三角形的一个内角与另两个内角的平分线所夹的角之间的关系
已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD,
试探究∠P与∠A的数量关系,并说明理由.

图1                          图2                       图3
(2)探究二:四边形的两个个内角与另两个内角的平分线所夹的角之间的关系
已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并说明理由.
(3)探究三:六边形的四个内角与另两个内角的平分线所夹的角之间的关系
已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:__     __          __

试题分析:探究一:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;
探究二:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;
探究三:根据六边形的内角和公式表示出∠ADC+∠BCD,然后同理探究二解答即可.
试题解析:探究一:∵DP、CP分别平分∠ADC和∠ACD,
∴∠PDC=∠ADC,∠PCD=∠ACD,
∴∠DPC=180°-∠PDC-∠PCD,
=180°-∠ADC-∠ACD,
=180°-(∠ADC+∠ACD),
=180°-(180°-∠A),
=90°+∠A;
探究二:∵DP、CP分别平分∠ADC和∠BCD,
∴∠PDC=∠ADC,∠PCD=∠BCD,
∴∠DPC=180°-∠PDC-∠PCD,
=180°-∠ADC-∠BCD,
=180°-(∠ADC+∠BCD),
=180°-(360°-∠A-∠B),
=(∠A+∠B);
探究三:六边形ABCDEF的内角和为:(6-2)•180°=720°,
∵DP、CP分别平分∠ADC和∠ACD,
∴∠P=∠ADC,∠PCD=∠ACD,
∴∠P=180°-∠PDC-∠PCD,
=180°-∠ADC-∠ACD,
=180°-(∠ADC+∠ACD),
=180°-(720°-∠A-∠B-∠E-∠F),
=(∠A+∠B+∠E+∠F)-180°,
即∠P=(∠A+∠B+∠E+∠F)-180°.
考点: 1.多边形内角与外角;2.三角形内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:△ABC中,AE平分∠BAC。
(1)如图①AD⊥BC于D,若∠C =70°,∠B =30°,则∠DAE=          
(2)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=40°,∠C=80°,求∠EFG的度数;
(3)在(2)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的角度大小发生改变吗?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中.

(1)操作发现(4分)
如图2,固定△ABC ,使△DEC绕点C旋转。当点D恰好落在AB边上时,填空:

线段DE与AC的位置关系是         
设△BDC的面积为,△AEC的面积为。则的数量关系是      
(2)猜想论证(4分)
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中的数量关系仍然成立,并尝试分别作出了△BDC,△AEC中边上的高,请你证明小明的猜想。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知平面直角坐标系中A(-8, 15), 则点A到x轴的距离为______, 到y轴距离为_____, 到原点的距离为_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直角三角形ABC中,∠C=90°,若AC="3" cm,BC="4" cm,AB="5" cm,则点C到AB的最短距离等于       cm。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为(   )
A.30° B.36°C.45°D.70°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC与A′B′C′关于直线l对称,则∠B的度数为(  )
A.50°B.30°
C.100°D.90°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(  )
A.5B.6 C.11D.16

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角三角形ABC中,∠C=90°,BC=12,AC=9,则AB=________.

查看答案和解析>>

同步练习册答案