精英家教网 > 初中数学 > 题目详情
如图,点A、B、C是⊙O上的三点,AB∥OC.
(1)求证:AC平分∠OAB.
(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,OE=
3
,求PE的长.
考点:垂径定理,勾股定理,圆周角定理
专题:
分析:(1)根据等腰三角形性质和平行线性质推出∠BAC=∠OAC即可;
(2)根据平行得出相似,根据相似得出比例式,代入求出即可.
解答:(1)证明:∵OC=OA,
∴∠C=∠OAC,
∵AB∥OC,
∴∠BAC=∠C,
∴∠BAC=∠OAC,
即AC平分∠OAB;

(2)解:∵OE⊥AB,AB=2,OE为半径,
∴AE=BE=1,
∵OE=
3

由勾股定理得:OA=2,
即OC=2,
∵AB∥OC,
∴△COP∽△AEP,
AE
OC
=
PE
OP

1
2
=
PE
3
-PE

解得:PE=
3
3
点评:本题考查了垂径定理,相似三角形的性质和判定,平行线的性质,等腰三角形的性质,勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

702班某兴趣小组有7名成员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,则他们年龄的众数和中位数分别为(  )
A、13,14
B、14,13
C、13,13
D、13,13.5

查看答案和解析>>

科目:初中数学 来源: 题型:

下列四个数中的负数是(  )
A、-22
B、
(-2)2
C、(-2)2
D、|-2|

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:
(1)同时自由转动转盘A与B;
(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜).你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

为进一步规范教育教学行为,切实减轻学生的课业负担,某校想了解本校九年级学生家庭作业用时情况.
(1)确定调查方式时,甲同学说:“我到九年级(1)班去调查全体同学.”乙同学说:“放学时我到校门口随机调查部分同学.”丙同学说:“我到九年级每个班随机调查一定数量的同学.”这三位同学中,
 
同学的调查方式最合理.
(2)他们采用了最合理的调查方式收集数据,并绘制了如下统计表和扇形统计图.
家庭作业用时 频数(人数) 频率
少于1小时 0.15
1~1.5小时 60
1.5~2小时 15 b
多于2小时
合计 a 1.00
请你根据以上图表提供的信息解答下列问题:
①a=
 
,b=
 

②在扇形统计图中,“多于2小时”所对应的扇形的圆心角的度数是
 

③若该校九年级有900名学生,请你估计有多少学生家庭作业用时不超过1.5小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果我们定义:“到三角形的两个顶点距离相等的点,叫做此三角形的开心点.”那么:
(1)如图1,观察并思考,△ABC的开心点有
 
个;
(2)如图2,CD为等边三角形ABC的高,开心点P在高CD上,且PD=
1
2
AB,则∠APB的度数为
 

(3)已知△ABC为直角三角形,斜边BC=5,AB=3,开心点P在AC边上,试探究PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).
(1)求点D的坐标;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5.2m/s,那它至少需要多少时间才能赶回巢中?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.
(1)请在图中找出与∠AOC相等的角,并说明理由;
(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.

查看答案和解析>>

同步练习册答案