精英家教网 > 初中数学 > 题目详情

如图,△ABC是边长为6的等边三角形,P是AC边上任意一点(与A、C两点不重合).Q是CB延长线上一点,且始终满足条件BQ=AP,过P作PE⊥AB于E,连接PQ交AB于D.
(1)如图(1)当∠CQP=30°时.求AP的长.
(2)如图(2),当P在任意位置时,求证:DE=数学公式AB.
作业宝

解:(1)作PF∥BC交AB于点F,
∴∠AEF=∠ABC,∠APF=∠C.∠PFD=∠QBD,∠FPD=∠BQD.
∵△ABC是等边三角形,
∴∠A=∠ABC=∠C=60°.AB=BC=AC.
∴∠AEF=60°,∠APF=60°,
∴∠AEF=∠APF=∠C=60°,
∴△AFP是等边三角形,
∴AF=AP=PF.
∵PE⊥AB,
∴AE=EF.
∵∠CQP=30°,∠C=60°,
∴∠QPC=90°,
∴∠DPA=90°,
∴∠ADP=30°.
∴AD=2AP.
∴AD=2AF.
∵DF+AF=AD,
∴DF+AF=2AF,
∴DF=AF,
∵BQ=AP,
∴BQ=FP.
在△PFD和△QBD中

∴△PFD≌△QBD(ASA),
∴FD=BD.
∴BD=DF=AF=AB.
∵AB=6,
∴AF=2,
∴AP=2.
答:AP的长为2;
(2)如图2,作PF∥BC交AB于点.
∴∠AEF=∠ABC,∠APF=∠C.∠PFD=∠QBD,∠FPD=∠BQD.
∵△ABC是等边三角形,
∴∠A=∠ABC=∠C=60°.AB=BC=AC.
∴∠AEF=60°,∠APF=60°,
∴∠AEF=∠APF=∠C=60°,
∴△AFP是等边三角形,
∴AF=AP=PF.
∵PE⊥AB,
∴AE=EF=AF.
∵BQ=AP,
∴BQ=FP.
在△PFD和△QBD中

∴△PFD≌△QBD(ASA),
∴FD=BD=BF.
∵ED=EF+DF=AF+BF,
∴ED=(AF+BF),
∴ED=AB.
分析:(1)作PF∥BC交AB于点F.根据等边三角形的性质及直角三角形的性质就可以求出∠QPC=∠DPA=90°,得出AB=3AP而求出结论;
(2)作PF∥BC交AB于点F.根据等边三角形的性质就可以得出△PFD≌△QBD就有DF=DB,由等腰三角形的性质就可以得出AE=EF,由EF+FD=ED就可以得出结论.
点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,直角三角形的性质的运用,平行线的性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是边长为a的等边三角形,O为△ABC的中心.将△ABC绕着中心O旋转120°.
①直接写出△ABC的内切圆半径r和外接圆半径R分别是多少?
②设点D、E、F分别在边AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,试画出△DEF,说明它的形状,并计算它的周长;
③根据“线动成面”的道理,△ABC的三条边AB、BC和CA在旋转过程中扫过的部分组成的平面图形的形状是什么?并计算出此图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•溧水县一模)如图,△ABC是边长为4的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连结BD,交AC于F.
(1)猜想BD与DE的位置关系,并证明你的结论;
(2)求△BDE的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湘潭)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.
(1)猜想AC与BD的位置关系,并证明你的结论;
(2)求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点做一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为
6
6

查看答案和解析>>

同步练习册答案