精英家教网 > 初中数学 > 题目详情

定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.

已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.

(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,

当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______

(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.

 (3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.

①求出点M随线段BC运动所围成的封闭图形的周长;

②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A,M,H为顶点的三角形与△AOD相似,若存在,求出m的值,若不存在,请说明理由.

1)2,

(2)4≤m≤6时 d=2

   2≤m≤4时  d=

(3)①16+4π

   ②m=1  m=3  m=5.2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,E、F分别是两腰AB、DC的中点,AF、BC的延精英家教网长线交于点G.
(1)求证:△ADF≌△GCF.
(2)类比三角形中位线的定义,我们把EF叫做梯形ABCD的中位线.阅读填空:
在△ABG中:∵E中AB的中点由(1)的结论可知F是AG的中点,
∴EF是△ABG的
 
线
∴EF=
1
2
BG=
1
2
(BC+CG)

又由(1)的结论可知:AD=CG
EF=
1
2
 
+
 

因此,可将梯形中位线EF与两底AD,BC的数量关系用文字语言表述为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•台州)定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是
2
2
;当m=5,n=2时,如图2,线段BC与线段OA的距离为
5
5

(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•东城区二模)定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中的四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是
2
2

当m=5,n=2时,如图2,线段BC与线段OA的距离是
5
5

(2)如图3,若点B落在圆心为A,半径为2的圆上,求线段BC与线段OA的距离d.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,若线段BC的中点为M,直接写出点M随线段BC运动所形成的图形的周长
16+4π
16+4π

查看答案和解析>>

科目:初中数学 来源: 题型:

定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.根据上述定义,

(1)当m=2,n=2时,如图1,线段BC与线段OA的距离是
2
2

(2)当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为
5
5

(3)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.

查看答案和解析>>

同步练习册答案